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Individual
(Please select 5 problems to solve)

1.

a) Let xk, k = 1, . . . , n be real numbers from the interval (0, π)

and define x =

n∑
i=1

xi

n
. Show that

n∏

k=1

sin xk

xk

≤
(

sin x

x

)n

.

b) From ∫ ∞

0

e−x2

dx =

√
π

2
,

calculate the integral
∫∞

0
sin(x2)dx.

2. Let f : R → R be any function. Prove that the set of points x in
R where f is continuous is a countable intersection of open sets.

3. Consider the equation ẋ = −x + f(t, x), where |f(t, x)| ≤ φ(t)|x|
for all (t, x) ∈ R × R,

∫∞
φ(t)dt < ∞. Prove that every solution

approaches zero as t →∞.

4. Find a harmonic function f on the right half-plane such that when
approaching any point in the positive half of the y-axis, the function
has limit 1, while when approaching any point in the negative half of
the y-axis, the function has limit −1.

5. Let K(x, y) ∈ C([0, 1] × [0, 1]). For all f ∈ C[0, 1], the space of
continuous functions on [0, 1], define a function

Tf(x) =

∫ 1

0

K(x, y)f(y)dy

Prove that Tf ∈ C([0, 1]). Moreover Ω = {Tf | ||f ||sup ≤ 1} is precom-
pact in C([0, 1]), i.e. every sequence in Ω has a converging subsequence,
here ||f ||sup = sup{|f(x)||x ∈ [0, 1]}.
6. Prove the Poisson summation formula:

∞∑
n=−∞

f(x + 2πn) =
1

2π

∞∑
−∞

f̂(k)eikx

1
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for all f of functions over R in the Schwartz space:

S = {f : (1 + x2)m|f (n)(x)| ≤ Cm,n,m, n ≥ 0}
where f̂(ξ) =

∫
R

f(x)e−ixξdx.
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Individual
(Please select 5 problems to solve)

1. Let Z1, · · · , Zn be i.i.d. random variables with Zi ∼ N(µ, σ2). Find

E(
n∑

i=1

Zi|Z1 − Z2 + Z3).

2. Let X1, · · · , Xn be pairwise independent. Further, assume that
EXi = 1 + i−1 and that max1≤i≤n E|Xi|1+ε < ∞ for some ε > 0.
Show that

1

n

n∑
i=1

Xi
P−→ 1.

3. Let Z1, · · · , Z6 be i.i.d. random variables with Zi ∼ N(0, 1). Set

U2 =
(Z1Z2 + Z3Z4 + Z5Z6)

2

Z2
2 + Z2

4 + Z2
6

, V 2 =
U2(Z2

2 + Z2
4)

U2 + Z2
6

.

Find and identify the densities of U2 and V 2.

4. Suppose that three characteristics in a large propulation can be
observed according to the following frequencies

p1 = θ3, p2 = 3θ(1− θ), p3 = (1− θ)3,

where θ ∈ (0, 1). Let Nj, j = 1, 2, 3 be the observed frequencies of
characteristic j in a random sample of size n.

(a) Construct the approximate level (1 − α) maximum likelihood
confidence set for θ.

(b) Derive the asymptotic distribution for the frequency substitu-

tion estimator θ̂2 = 1− (N3/n)1/3.

5. (1) Suppose

S =

[
σ uT

0 Sc

]
, T =

[
τ vT

0 Tc

]
, b =

[
β
bc

]
,

where σ, τ and β are scalars, Sc and Tc are n-by-n matrices,
and bc is an n-vector. Show that if there exists a vector xc such
that

(ScTc − λI)xc = bc

1



2

and wc = Tcxc is available, then

x =

[
γ
xc

]
, γ =

β − σvTxc − uTwc

στ − λ

solves (ST − λI)x = b.
(2) Hence or otherwise, derive an O(n2) algorithm for solving the

linear system (U1U2 − λI)x = b where U1 and U2 are n-by-
n upper triangular matrices, and (U1U2 − λI) is nonsingular.
Please write down your algorithm and prove that it is indeed of
O(n2) complexity.

(3) Hence or otherwise, derive an O(pn2) algorithm for solving the
linear system (U1U2 · · ·Up − λI)x = b where {Ui}p

i=1 are all n-
by-n upper triangular matrices, and (U1U2 · · ·Up − λI) is non-
singular. Please write down your algorithm and prove that it is
indeed of O(pn2) complexity.

6. (1) Let A ∈ Rm×n, i.e. A is an m-by-n real matrix. Show that
there exists an m-by-m orthogonal matrix U and an n-by-n
orthogonal matrix V such that

UT AV = diag(σ1, σ2, . . . , σp),

where p = min{m,n} and

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

(2) Let rank(A)= r. Show that for any positive integer k < r,

min
rank(B)=k

‖A−B‖2 = σk+1.

(Hint: Consider the matrix Ak =
k∑

i=1

σiuiv
T
i , where ui and vi

are columns of U and V respectively.)
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1. Let D∗ = {(x, y) ∈ R2 | 0 < x2 +y2 < 1} be the punctured unit disc
in the Euclidean plane. Let g be the complete Riemannian metric on
D∗ with contsant curvature −1. Find the disctance under the metric
between the points (e−2π, 0) and (−e−π, 0).

2. Show that every closed hypersurface in Rn has a point at which the
second fundamental form is positive definite.

3. Prove that the real projective space RP n is orientable if and only if
n is odd.

4. Suppose π : M1 −→ M2 is a C∞ map of one connected differentiable
manifold to another. And suppose for each p ∈ M1, the differential
π∗ : TpM1 −→ Tπ(p)M2 is a vector space isomorphism.
(a). Show that if M1 is compact, then π is a covering space projection.
(b). Given an example where M2 is compact but π : M1 −→ M2 is not
a covering space (but has the π∗ isomorphism property).

5. Let Σg be the closed orientable surface of genus g. Show that if
g > 1, then Σg is a covering space of Σ2.

6. Let M be a smooth 4-dimensional manifold. A symplectic form is a
closed 2-form ω on M such that ω ∧ ω is a nowhere vanishing 4-form.
(a). Construct a symplectic form on R4.
(b). Show that there are no symplectic forms on S4.

1
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1. Let V be a finite dimensional complex vector space. Let A,B be
two linear endomorphisms of V satisfying AB − BA = B. Prove that
there is a common eigenvector for A and B.

2. Let M2(R) be the ring of 2× 2 matrices with real entries. Its group
of multiplicative units is GL2(R), consisting of invertible matrices in
M2(R).

(a) Find an injective homomorphism from the field C of complex
numbers into the ring M2(R).

(b) Show that if φ1 and φ2 are two such homomorphisms, then there
exists a g ∈ GL2(R) such that φ2(x) = gφ1(x)g−1 for all x ∈ C.

(c) Let h be an element in GL2(R) whose characteristic polynomial
f(x) is irreducible over R. Let F ⊂ M2(R) be the subring
generated by h and a · I for all a ∈ R, where I is the idenity
matrix. Show that F is isomorphic to C.

(d) Let h′ be any element in GL2(R) with the same characteristic
polynomial f(x) as h in (c). Show that h and h′ are conjugate
in GL2(R).

(e) If f(x) in (c) and (d) is reducible over R, will the same conclu-
sion on h and h′ hold? Give reasons.

3. Let G be a non-abelian finite group. Let c(G) be the number of
conjugacy classes in G Define c(G) := c(G)/|G|, (|G| = Card(G)).

(a) Prove that c(G) ≤ 5
8
.

(b) Is there a finite group H with c(H) = 5
8
?

(c) (open ended question) Suppose that there exists a prime num-
ber p and an element x ∈ G such that the cardinality of the
conjugacy class of x is divisible by p. Find a good/sharp upper
bound for c(G).

4. Let F be a splitting field over Q the polynomial x8−5 ∈ Q[x]. Recall
that F is the subfield of C generated by all roots of this polynomial.

1
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(a) Find the degree [F : Q] of the number field F .
(b) Determine the Galois group Gal(F/Q).

5. Let T ⊂ N>0 be a finite set of positive integers. For each integer
n > 0, define an to be the number of all finite sequences (t1, . . . , tm)
with m ≤ n, ti ∈ T for all i = 1, . . . , m and t1 + . . . + tm = n. Prove
that the infinite series

1 +
∑
n≥1

an zn ∈ C[[z]]

is a rational function in z, and find this rational function.

6. Describe all the irreducible complex representations of the group S4

(the symmetric group on four letters).
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1.

a) Let f(z) be holomorphic in D: |z| < 1 and |f(z)| ≤ 1 (z ∈ D).
Prove that

|f(0)| − |z|
1 + |f(0)||z| ≤ |f(z)| ≤ |f(0)|+ |z|

1− |f(0)||z| . (z ∈ D)

b) For any finite complex value a, prove that

1

2π

∫ 2π

0

log |a− eiθ|dθ = max{log |a|, 0}.

2. Let f ∈ C1(R), f(x + 1) = f(x), for all x, then we have

||f ||∞ ≤
∫ 1

0

|f(t)|dt +

∫ 1

0

|f ′(t)|dt.

3. Consider the equation

ẍ + (1 + f(t))x = 0.

We assume that
∫∞ |f(t)|dt < ∞. Study the Lyapunov stability of the

solution (x, ẋ) = (0, 0).

4. Suppose f : [a, b] → R be a L1-integrable function. Extend f to be
0 outside the interval [a, b]. Let

φ(x) =
1

2h

∫ x+h

x−h

f

Show that ∫ b

a

|φ| ≤
∫ b

a

|f |.

5. Suppose f ∈ L1[0, 2π], f̂(n) = 1
2π

∫ 2π

0
f(x)e−inxdx, prove that

1)
∞∑

|n|=0

|f̂(n)|2 < ∞ implies f ∈ L2[0, 2π],

2)
∑

n

|nf̂(n)| < ∞ implies that f = f0, a.e., f0 ∈ C1[0, 2π],

where C1[0, 2π] is the space of functions f over [0, 1] such
that both f and its derivative f

′
are continuous functions.

1
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6. Suppose Ω ⊂ R3 to be a simply connected domain and Ω1 ⊂ Ω with
boundary Γ. Let u be a harmonic function in Ω and M0 = (x0, y0, z0) ∈
Ω1. Calculate the integral:

II = −
∫ ∫

Γ

(
u

∂

∂n
(
1

r
)− 1

r

∂u

∂n

)
dS,

where
1

r
=

1√
(x− x0)2 + (y − x0)2 + (z − x0)2

and
∂

∂n
denotes the

out normal derivative with respect to boundary Γ of the domain Ω1.
(Hint: use the formula ∂v

∂n
dS = ∂v

∂x
dy ∧ dz + ∂v

∂y
dz ∧ dx + ∂v

∂z
dx ∧ dy.)
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1. Let X1, · · · , Xn be independent and identically distributed random
variables with continuous distribution functions F (x1), · · · , F (xn), re-
spectively. Let Y1 < · · · < Yn be the order statistics of X1, · · · , Xn.
Prove that Zj = F (Yj) has the beta (j, n − j + 1) distribution (j =
1, · · · , n).

2. Let X1, · · · , Xn be i.i.d. random variable with a continuous density
f at point 0. Let

Yn,i =
3

4bn

(1−X2
i /b2

n)I(|Xi| ≤ bn).

Show that ∑n
i=1(Yn,i − EYn,i)

(bn

∑n
i=1 Yn,i)1/2

L−→ N(0, 3/5),

provided bn → 0 and nbn →∞.

3. Let X1, · · · , Xn be independently and indentically distributed ran-
dom variables with Xi ∼ N(θ, 1). Suppose that it is known that |θ| ≤ τ ,
where τ is given. Show

min
a1,··· ,an+1

sup
|θ|≤τ

E(
n∑

i=1

aiXi + an+1 − θ)2 =
τ 2n−1

τ 2 + n−1
.

Hint: Carefully use the sufficiency principle.

4. The rules for “1 and 1” foul shooting in basketball are as follows.
The shooter gets to try to make a basket from the foul line. If he
succeeds, he gets another try. More precisely, he make 0 baskets by
missing the first time, 1 basket by making the first shot and xsmissing
the second one, or 2 baskets by making both shots.

Let n be a fixed integer, and suppose a player gets n tries at “ 1 and
1” shooting. Let N0, N1, and N2 be the random variables recording
the number of times he makes 0, 1, or 2 baskets, respectively. Note
that N0 + N1 + N2 = n. Suppose that shots are independent Bernoulli
trails with probability p for making a basket.

(a) Write down the likelihood for (N0, N1, N2).
1
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(b) Show that the maximum likelihood estimator of p is

p̂ =
N1 + 2N2

N0 + 2N1 + 2N2

.

(c) Is p̂ an unbiased estimator for p? Prove or disprove. (Hint: Ep̂
is a polynomial in p, whose order is higher than 1 for p ∈ (0, 1).)

(d) Find the asymptotic distribution of p̂ as n tends to ∞.

5. When considering finite difference schemes approximating partial
differential equations (PDEs), for example, the scheme

(1) un+1
j = un

j − λ(un
j − un

j−1)

where λ =
∆t

∆x
, approximating the PDE

(2) ut + ux = 0,

we are often interested in stability, namely

(3) ||un|| ≤ C||u0||, n∆t ≤ T

for a constant C = C(T ) independent of the time step ∆t and the spa-
tial mesh size ∆x. Here ||·|| is a given norm, for example the L2 norm or
the L∞ norm, of the numerical solution vector un = (un

1 , u
n
2 , · · · , un

N).
The mesh points are xj = j∆x, tn = n∆t, and the numerical solution
un

j approximates the exact solution u(xj, t
n) of the PDE (2) with a

periodic boundary condition.

(i) Prove that the scheme (1) is stable in the sense of (3) for both
the L2 norm and the L∞ norm under the time step restriction
λ ≤ 1.

(ii) Since the numerical solution un is in a finite dimensional space,
Student A argues that the stability (3), once proved for a spe-
cific norm || · ||a, would also automatically hold for any other
norm || · ||b. His argument is based on the equivalency of all
norms in a finite dimensional space, namely for any two norms
|| · ||a and || · ||b on a finite dimensional space W , there exists a
constant δ > 0 such that

δ||u||b ≤ ||u||a ≤ 1

δ
||u||b.

Do you agree with his argument? If yes, please give a detailed
proof of the following theorem: If a scheme is stable, namely (3)
holds for one particular norm (e.g. the L2 norm), then it is also
stable for any other norm. If not, please explain the mistake
made by Student A.

6. We have the following 3 PDEs

(4) ut + Aux = 0,

(5) ut + Bux = 0,
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(6) ut + Cux = 0, C = A + B.

Here u is a vector of size m and A and B are m × m real matrices.
We assume m ≥ 2 and both A and B are diagonalizable with only real
eigenvalues. We also assume periodic initial condition for these PDEs.

(i) Prove that (4) and (5) are both well-posed in the L2-norm.
Recall that a PDE is well-posed if its solution satisfies

||u(·, t)|| ≤ C(T )||u(·, 0)||, 0 ≤ t ≤ T

for a constant C(T ) which depends only on T .
(ii) Is (6) guaranteed to be well-posed as well? If yes, give a proof;

if not, give a counter example.
(iii) Suppose we have a finite difference scheme

un+1 = Ahu
n

for approximating (4) and another scheme

un+1 = Bhu
n

for approximating (5). Suppose both schemes are stable in the
L2-norm, namely (3) holds for both schemes. If we now form
the splitting scheme

un+1 = Bh Ahu
n

which is a consistent scheme for solving (6), is this scheme guar-
anteed to be L2 stable as well? If yes, give a proof; if not, give
a counter example.
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1. Let Sn ⊂ Rn+1 be the unit sphere, and Rn ⊂ Rn+1 the equator n-
plane through the center of Sn. Let N be the north pole of Sn. Define
a mapping π : Sn\{N} → Rn called the stereographic projection that
takes A ∈ Sn\{N} into the intersection A′ ∈ Rn of the equator n-
plane Rn with the line which passes through A and N . Prove that the
stereographic projection is a conformal change, and derive the standard
metric of Sn by the stereographic projection.

2. Let M be a (connected) Riemannian manifold of dimension 2. Let f
be a smooth non-constant function on M such that f is bounded from
above and ∆f ≥ 0 everywhere on M . Show that there does not exist
any point p ∈ M such that f(p) = sup{f(x) : x ∈ M}.
3. Let M be a compact smooth manifold of dimension d. Prove that
there exists some n ∈ Z+ such that M can be regularly embedded in
the Euclidean space Rn.

4. Show that any C∞ function f on a compact smooth manifold M
(without boundary) must have at least two critical points. When M is
the 2-torus, show that f must have more than two critical points.

5. Construct a space X with H0(X) = Z, H1(X) = Z2×Z3, H2(X) =
Z, and all other homology groups of X vanishing.

6. (a). Define the degree deg f of a C∞ map f : S2 −→ S2 and prove
that deg f as you present it is well-defined and independent of any
choices you need to make in your definition.
(b). Prove in detail that for each integer k (possibly negative), there
is a C∞ map f : S2 −→ S2 of degree k.

1
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1. For a real number r, let [r] denote the maximal integer less or equal
than r. Let a and b be two positive irrational numbers such that
1
a

+ 1
b

= 1. Show that the two sequences of integers [ax], [bx] for
x = 1, 2, 3, · · · contain all natural numbers without repetition.

2. Let n ≥ 2 be an integer and consider the Fermat equation

Xn + Y n = Zn, X, Y, Z ∈ C[t].

Find all nontrivial solution (X,Y, Z) of the above equation in the sense
that X,Y, Z have no common zero and are not all constant.

3. Let p ≥ 7 be an odd prime number.

(a) Evaluate the rational number cos(π/7) · cos(2π/7) · cos(3π/7).

(b) Show that
∏(p−1)/2

n=1 cos(nπ/p) is a rational number and deter-
mine its value.

4. For a positive integer a, consider the polynomial

fa = x6 + 3ax4 + 3x3 + 3ax2 + 1.

Show that it is irreducible. Let F be the splitting field of fa. Show
that its Galois group is solvable.

5. Prove that a group of order 150 is not simple.

6. Let V ∼= C2 be the standard representation of SL2(C).

(a) Show that the n-th symmetric power Vn = Symn V is irre-
ducible.

(b) Which Vn appear in the decomposition of the tensor product
V2 ⊗ V3 into irreducible representations?

1
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(Please select 5 problems to solve)

1. a) Compute the integral:
∫∞
−∞

x cos xdx
(x2+1)(x2+2)

,

b) Show that there is a continuous function f : [0, +∞) → (−∞, +∞)
such that f 6≡ 0 and f(4x) = f(2x) + f(x).

2. Solve the following problem:{
d2u
dx2 − u(x) = 4e−x, x ∈ (0, 1),
u(0) = 0, du

dx
(0) = 0.

3. Find an explicit conformal transformation of an open set U = {|z| >
1} \ (−∞,−1] to the unit disc.

4. Assume f ∈ C2[a, b] satisfying |f(x)| ≤ A, |f ′′(x)| ≤ B for each
x ∈ [a, b] and there exists x0 ∈ [a, b] such that |f ′(x0)| ≤ D, then

|f ′(x)| ≤ 2
√

AB + D, ∀x ∈ [a, b].

5. Let C([0, 1]) denote the Banach space of real valued continuous
functions on [0, 1] with the sup norm, and suppose that X ⊂ C([0, 1])
is a dense linear subspace. Suppose l : X → R is a linear map (not
assumed to be continuous in any sense) such that l(f) ≥ 0 if f ∈ X
and f ≥ 0. Show that there is a unique Borel measure µ on [0, 1] such
that l(f) =

∫
fdµ for all f ∈ X.

6. For s ≥ 0, let Hs(T ) be the space of L2 functions f on the circle

T = R/(2πZ) whose Fourier coefficients f̂n =
∫ 2π

0
e−inxf(x)dx satisfy

Σ(1 + n2)s||f̂n|2 < ∞, with norm ||f ||2s = (2π)−1Σ(1 + n2)s|f̂n|2.
a. Show that for r > s ≥ 0, the inclusion map i : Hr(T ) → Hs(T ) is

compact.
b. Show that if s > 1/2, then Hs(T ) includes continuously into

C(T ), the space of continuous functions on T , and the inclusion map
is compact.

1
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(Please select 5 problems to solve)

1. Given a weight function ρ(x) > 0, let the inner-product correspond-
ing to ρ(x) be defined as follows:

(f, g) :=

∫ b

a

ρ(x)f(x)g(x)dx,

and let ‖f‖ := (f, f).
(1) Define a sequence of polynomials as follows:

p0(x) = 1, p1(x) = x− a1,

pn(x) = (x− an)pn−1(x)− bnpn−2(x), n = 2, 3, · · ·
where

an =
(xpn−1, pn−1)

(pn−1, pn−1)
, n = 1, 2, · · ·

bn =
(xpn−1, pn−2)

(pn−2, pn−2)
, n = 2, 3, · · · .

Show that {pn(x)} is an orthogonal sequence of monic polyno-
mials.

(2) Let {qn(x)} be an orthogonal sequence of monic polynomials
corresponding to the ρ inner product. (A polynomial is called
monic if its leading coefficient is 1.) Show that {qn(x)} is unique
and it minimizes ‖qn‖ amongst all monic polynomials of degree
n.

(3) Hence or otherwise, show that if ρ(x) = 1/
√

1− x2 and [a, b] =
[−1, 1], then the corresponding orthogonal sequence is the Cheby-
shev polynomials:

Tn(x) = cos(n arccos x), n = 0, 1, 2, · · · .

and the following recurrent formula holds:

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, · · · .

(4) Find the best quadratic approximation to f(x) = x3 on [−1, 1]
using ρ(x) = 1/

√
1− x2.

1
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2. If two polynomials p(x) and q(x), both of fifth degree, satisfy

p(i) = q(i) =
1

i
, i = 2, 3, 4, 5, 6,

and
p(1) = 1, q(1) = 2,

find p(0)− q(0).

3. Lay aside m black balls and n red balls in a jug. Supposes 1 ≤ r ≤
k ≤ n. Each time one draws a ball from the jug at random.

1) If each time one draws a ball without return, what is the prob-
ability that in the k-th time of drawing one obtains exactly the
r-th red ball?

2) If each time one draws a ball with return, what is the probability
that in the first k times of drawings one obtained totally an odd
number of red balls?

4. Let X and Y be independent and identically distributed random
variables. Show that

E[|X + Y |] ≥ E[|X|].
Hint: Consider separately two cases: E[X+] ≥ E[X−] and E[X+] <
E[X−].

5. Suppose that X1, · · · , Xn are a random sample from the Bernoulli
distribution with probability of success p1 and Y1, · · · , Yn be an inde-
pendent random sample from the Bernoulli distribution with probabil-
ity of success p2.

(a) Give a minimum sufficient statistic and the UMVU (uniformly
minimum variance unbiased) estimator for θ = p1 − p2.

(b) Give the Cramer-Rao bound for the variance of the unbiased
estimators for v(p1) = p1(1 − p1) or the UMVU estimator for
v(p1).

(c) Compute the asymptotic power of the test with critical region

|√n(p̂1 − p̂2)/
√

2p̂q̂| ≥ z1−α

when p1 = p and p2 = p + n−1/2∆, where p̂ = 0.5p̂1 + 0.5p̂2.

6. Suppose that an experiment is conducted to measure a constant θ.
Independent unbiased measurements y of θ can be made with either
of two instruments, both of which measure with normal errors: for
i = 1, 2, instrument i produces independent errors with a N(0, σ2

i )
distribution. The two error variances σ2

1 and σ2
2 are known. When a

measurement y is made, a record is kept of the instrument used so that
after n measurements the data is (a1, y1), . . . , (an, yn), where am = i if
ym is obtained using instrument i. The choice between instruments is
made independently for each observation in such a way that

P (am = 1) = P (am = 2) = 0.5, 1 ≤ m ≤ n.
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Let x denote the entire set of data available to the statistician, in this
case (a1, y1), . . . , (an, yn), and let lθ(x) denote the corresponding log

likelihood function for θ. Let a =
n∑

m=1

(2− am).

(a) Show that the maximum likelihood estimate of θ is given by

θ̂ =

(
n∑

m=1

1/σ2
am

)−1 (
n∑

m=1

ym/σ2
am

)
.

(b) Express the expected Fisher information Iθ and the observed
Fisher information Ix in terms of n, σ2

1, σ2
2, and a. What hap-

pens to the quantity Iθ/Ix as n →∞?
(c) Show that a is an ancillary statistic, and that the conditional

variance of θ̂ given a equals 1/Ix. Of the two approximations

θ̂
·∼ N(θ, 1/Iθ)

and
θ̂

·∼ N(θ, 1/Ix),

which (if either) would you use for the purposes of inference,
and why?
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Geometry and Topology
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9:30–12:00 am, July 10, 2011

(Please select 5 problems to solve)

1. Suppose M is a closed smooth n-manifold.
a) Does there always exist a smooth map f : M → Sn from M into the
n-sphere, such that f is essential (i.e. f is not homotopic to a constant
map)? Justify your answer.
b) Same question, replacing Sn by the n-torus T n.

2. Suppose (X, d) is a compact metric space and f : X → X is a map
so that d(f(x), f(y)) = d(x, y) for all x, y in X. Show that f is an onto
map.

3. Let C1, C2 be two linked circles in R3. Show that C1 cannot be
homotopic to a point in R3\C2.

4. Let M = R2/Z2 be the two dimensional torus, L the line 3x = 7y
in R2, and S = π(L) ⊂ M where π : R2 → M is the projection map.
Find a differential form on M which represents the Poincaré dual of S.

5. A regular curve C in R3 is called a Bertrand Curve, if there exists
a diffeomorphism f : C → D from C onto a different regular curve D
in R3 such that NxC = Nf(x)D for any x ∈ C. Here NxC denotes the
principal normal line of the curve C passing through x, and TxC will
denote the tangent line of C at x. Prove that:
a) The distance |x− f(x)| is constant for x ∈ C; and the angle made
between the directions of the two tangent lines TxC and Tf(x)D is also
constant.
b) If the curvature k and torsion τ of C are nowhere zero, then there
must be constants λ and µ such that λk + µτ = 1

6. Let M be the closed surface generated by carrying a small circle
with radius r around a closed curve C embedded in R3 such that the
center moves along C and the circle is in the normal plane to C at each
point. Prove that ∫

M

H2dσ ≥ 2π2,

and the equality holds if and only if C is a circle with radius
√

2r. Here
H is the mean curvature of M and dσ is the area element of M .

1
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Combinatorics
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(Please select 5 problems to solve)

For the following problems, every example and statement must be
backed up by proof. Examples and statements without proof will re-
ceive no-credit.

1. Let K = Q(
√−3), an imaginary quadratic field.

(a) Does there exists a finite Galois extension L/Q which contains
K such that Gal(L/Q) ∼= S3? (Here S3 is the symmetric group
in 3 letters.)

(b) Does there exists a finite Galois extension L/Q which contains
K such that Gal(L/Q) ∼= Z/4Z?

(c) Does there exists a finite Galois extension L/Q which contains
K such that Gal(L/Q) ∼= Q? Here Q is the quaternion group
with 8 elements {±1,±i,±j,±k}, a finite subgroup of the group
of units H× of the ring H of all Hamiltonian quaternions.

2. Let f be a two-dimensional (complex) representation of a finite
group G such that 1 is an eigenvalue of f(σ) for every σ ∈ G. Prove
that f is a direct sum of two one-dimensional representations of G

3. Let F ⊂ R be the subset of all real numbers that are roots of monic
polynomials f(X) ∈ Q[X].

(1) Show that F is a field.
(2) Show that the only field automorphisms of F are the identity

automorphism α(x) = x for all x ∈ F .

4. Let V be a finite-dimensional vector space over R and T : V → V
be a linear transformation such that

(1) the minimal polynomial of T is irreducible;
(2) there exists a vector v ∈ V such that {T iv | i ≥ 0} spans V .

Show that V contains no non-trivial proper T -invariant subspace.

5. Given a commutative diagram

A → B → C → D → E
↓ ↓ ↓ ↓ ↓
A′ → B′ → C ′ → D′ → E ′

1
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of Abelian groups, such that (i) both rows are exact sequences and (ii)
every vertical map, except the middle one, is an isomorphism. Show
that the middle map C → C ′ is also an isomorphism.

6. Prove that a group of order 150 is not simple.
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(Please select 5 problems to solve)

1. Let H2(∆) be the space of holomorphic functions in the unit disk
∆ = {|z| < 1} such that

∫
∆
|f |2|dz|2 < ∞. Prove that H2(∆) is a

Hilbert space and that for any r < 1, the map T : H2(∆) → H2(∆)
given by Tf(z) := f(rz) is a compact operator.

2. For any continuous function f(z) of period 1, show that the equation

dϕ

dt
= 2πϕ + f(t)

has a unique solution of period 1.

3. Let h(x) be a C∞ function on the real line R. Find a C∞ function
u(x, y) on an open subset of R containing the x-axis such that ux +
2uy = u2 and u(x, 0) = h(x).

4. Let S = {x ∈ R | |x− p
q
| ≤ c/q3, for all p, q ∈ Z, q > 0, c > 0}, show

that S is uncountable and its measure is zero.

5. Let sl(n) denote the set of all n× n real matrices with trace equal
to zero and let SL(n) be the set of all n× n real matrices with deter-
minant equal to one. Let ϕ(z) be a real analytic function defined in a
neighborhood of z = 0 of the complex plane C satisfying the conditions
ϕ(0) = 1 and ϕ

′
(0) = 1.

(a) If ϕ maps any near zero matrix in sl(n) into SL(n) for some n ≥ 3,
show that ϕ(z) = exp(z).
(b)Is the conclusion of (a) still true in the case n = 2? If it is true,
prove it. If not, give a counterexample.

6. Use mathematical analysis to show that:
(a) e and π are irrational numbers;
(b) e and π are also transcendental numbers.

1
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(Please select 5 problems to solve)

1. Let A be an N -by-N symmetric positive definite matrix. The con-
jugate gradient method can be described as follows:

r0 = b− Ax0,p0 = r0,x0 = 0
FOR n = 0, 1, . . .

αn = ‖rn‖2
2/(p

T
nApn)

xn+1 = xn + αnpn

rn+1 = rn − αnApn

βn = −rT
k+1Apk/p

T
k Apk

pn+1 = rn+1 + βnpn

END FOR

Show
(a) αn minimizes f(xn + αpn) for all α ∈ R where

f(x) ≡ 1

2
xT Ax− bTx.

(b) pT
i rn = 0 for i < n and pT

i Apj = 0 if i 6= j.
(c) Span{p0,p1, . . . ,pn−1}= Span{r0, r1, . . . , rn−1} ≡ Kn.
(d) rn is orthogonal to Kn.

2. We use the following scheme to solve the PDE ut + ux = 0:

un+1
j = aun

j−2 + bun
j−1 + cun

j

where a, b, c are constants which may depend on the CFL number λ =
∆t
∆x

. Here xj = j∆x, tn = n∆t and un
j is the numerical approximation

to the exact solution u(xj, t
n), with periodic boundary conditions.

(i) Find a, b, c so that the scheme is second order accurate.
(ii) Verify that the scheme you derived in Part (i) is exact (i.e. un

j =
u(xj, t

n)) if λ = 1 or λ = 2. Does this imply that the scheme is stable
for λ ≤ 2? If not, find λ0 such that the scheme is stable for λ ≤ λ0.
Recall that a scheme is stable if there exist constants M and C, which
are independent of the mesh sizes ∆x and ∆t, such that

‖un‖ ≤ MeCT‖u0‖
for all ∆x, ∆t and n such that tn ≤ T . You can use either the L∞

norm or the L2 norm to prove stability.
1
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3. Let X and Y be independent random variables, identically dis-
tributed according to the Normal distribution with mean 0 and variance
1, N(0, 1).

(a) Find the joint probability density function of (R, ), where

R = (X2 + Y 2)1/2 and θ = arctan(Y/X).

(b) Are R and θ independent? Why, or why not?
(c) Find a function U of R which has the uniform distribution on

(0, 1), Unif(0, 1).
(d) Find a function V of θ which is distributed as Unif(0,1).
(e) Show how to transform two independent observations U and V

from Unif(0,1) into two independent observations X, Y from
N(0, 1).

4. Let X be a random variable such that E[|X|] < ∞. Show that
E[|X − a|] = inf

x∈R
E[|X − x|],

if and only if a is a median of X.

5. Let Y1, . . . , Yn be iid observations from the distribution f(x − θ),
where θ is unknown and f( ) is probability density function symmetric
about zero.

Suppose a priori that θ has the improper prior θ ∼ Lebesgue (flat)
on (−∞,∞). Write down the posterior distribution of θ.

Provides some arguments to show that this flat prior is noninforma-
tive.

Show that with the posterior distribution in (a), a 95% probability
interval is also a 95% confidence interval.

6. Suppose we have two independent random samples {Y1, i = 1, . . . , n}
from Poisson with (unknown) mean λ1 and {Yi, i = n+1, . . . , 2n} from
Poisson with (unknown) mean λ2 Let θ = λ1/(λ1 + λ2).

(a) Find an unbiased estimator of θ
(b) Does your estimator have the minimum variance among all un-

biased estimators? If yes, prove it. If not, find one that has the
minimum variance (and prove it).

(c) Does the unbiased minimum variance estimator you found at-
tain the Fisher information bound? If yes, show it. If no, why
not?
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(Please select 5 problems to solve)

1. Suppose K is a finite connected simplicial complex. True or false:
a) If π1(K) is finite, then the universal cover of K is compact.
b) If the universal cover of K is compact then π1(K) is finite.

2. Compute all homology groups of the the m-skeleton of an n-simplex,
0 ≤ m ≤ n.

3. Let M be an n-dimensional compact oriented Riemannian manifold
with boundary and X a smooth vector field on M . If n is the inward
unit normal vector of the boundary, show that

∫

M

div(X) dVM =

∫

∂M

X · n dV∂M .

4. Let Fk(M) be the space of all C∞ k-forms on a differentiable man-
ifold M . Suppose U and V are open subsets of M .
a) Explain carefully how the usual exact sequence

0 −→ F(U ∪ V ) −→ F(U)⊕FV ) −→ F(U ∩ V ) −→ 0

arises.
b) Write down the “long exact sequence” in de Rham cohomology as-
sociated to the short exact sequence in part (a) and describe explicitly
how the map

Hk
deR(U ∩ V ) −→ Hk+1

deR (U ∪ V )

arises.

5. Let M be a Riemannian n-manifold. Show that the scalar curvature
R(p) at p ∈ M is given by

R(p) =
1

vol(Sn−1)

∫

Sn−1

Ricp(x)dSn−1,

where Ricp(x) is the Ricci curvature in direction x ∈ Sn−1 ⊂ TpM ,
vol(Sn−1) is the volume of Sn−1 and dSn−1 is the volume element of
Sn−1.

1
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6. Prove the Schur’s Lemma: If on a Riemannian manifold of dimension
at least three, the Ricci curvature depends only on the base point but
not on the tangent direction, then the Ricci curvature must be constant
everywhere, i.e., the manifold is Einstein.
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Combinatorics
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(Please select 5 problems to solve)

For the following problems, every example and statement must be
backed up by proof. Examples and statements without proof will re-
ceive no-credit.

1. Let F be a field and F̄ the algebraic closure of F . Let f(x, y) and
g(x, y) be polynomials in F [x, y] such that g.c.d.(f, g) = 1 in F [x, y].
Show that there are only finitely many (a, b) ∈ F̄×2 such that f(a, b) =
g(a, b) = 0. Can you generalize this to the cases of more than two-
variables?

2. Let D be a PID, and Dn the free module of rank n over D. Then
any submodule of Dn is a free module of rank m ≤ n.

3. Identify pairs of integers n 6= m ∈ Z+ such that the quotient rings
Z[x, y]/(x2 − yn) ∼= Z[x, y]/(x2 − ym); and identify pairs of integers
n 6= m ∈ Z+ such that Z[x, y]/(x2 − yn) 6∼= Z[x, y]/(x2 − ym).

4. Is it possible to find an integer n > 1 such that the sum

1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
is an integer?

5. Recall that F7 is the finite field with 7 elements, and GL3(F7) is the
group of all invertible 3× 3 matrices with entries in F7.

(a) Find a 7-Sylow subgroup P7 of GL3(F7).
(b) Determine the normalizer subgroup N of the 7-Sylow subgroup

you found in (a).
(c) Find a 2-Sylow subgroup of GL3(F7).

6. For a ring R, let SL2(R) denote the group of invertible 2×2 matrices.

Show that SL2(Z) is generated by T =

(
1 1
0 1

)
and S =

(
0 1
−1 0

)
.

What about SL2(R)?

1
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Analysis and Differential Equations

Please solve 5 out of the following 6 problems,
or highest scores of 5 problems will be counted.

1. Compute the integral∫ ∞

0

xp

1 + x2
dx,−1 < p < 1.

2. Construct a one to one conformal mapping from the region

U = {z ∈ C||z − i

2
| < 1

2
}/{z||z − i

4
| < 1

4
}

onto the unit disk.

3. Let f(x) be a C2 function on R. Show that

sup |f ′(x)|2 ≤ 4 sup |f(x)| sup |f ′′(x)|.
4. Let f(x) be a real measurable function defined on [a, b]. Let n(y)
be the number of solutions of the equation f(x) = y. Prove that n(y)
is a measurable function on R.

5. For 1 < p, q < ∞,
1

p
+

1

q
= 1, let g in Lq. Consider the linear

functional F on Lp given by: F (f) is equal to the integral of fg. Show
that ||F || = ||g||q.
6. Let Rn

+ = {x = (x1, x2, ..., xn) ∈ Rn|xn > 0}. Show that the formula

u(x) =
2xn

nαn

∫

∂Rn
+

g(y)

|x− y|n dy, x ∈ Rn
+

is a solution of the problem

∆u = 0, in Rn
+, u = g on ∂Rn

+,

where αn is the volume of the unit n dimensional sphere.

1
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Geometry and Topology

Please solve 5 out of the following 6 problems,
or highest scores of 5 problems will be counted.

1. Show that π3(S
2) 6= 0.

2. Let M be a smooth manifold of dimension n, and X1, · · · , Xk be k
everywhere linearly independent smooth vector fields on an open set
U ⊂ M satisfying that [Xi, Xj] = 0 for 1 ≤ i, j ≤ k. Prove that for any
point p ∈ U there is a coordinate chart (V, yi) with p ∈ V ⊆ U and
coordinates {y1, · · · , yn} such that Xi = ∂

∂yi on V for each 1 ≤ i ≤ k.

3. Show that any self homeomorphism of CP2 is orientation preserving.

4. Prove the following version of the isoperimetric inequality: Suppose
C is a simple (that is, without self-intersection), smooth, closed curve
in the Euclidean plane, with length L. Show that the area enclosed by
C is less than or equal to L2

4π
, and the equality occurs when and only

when C is a round circle.

5. Let x : M → R3 be a closed surface in 3-dimensional Euclidean
space. Its Gaussian curvature and mean curvature are denoted by K
and H respectively. Prove that:∫∫

M

HdA +

∫∫

M

pKdA = 0,

∫∫

M

pHdA +

∫∫

M

dA = 0,

where p = ~x · ~n is the support function of M , ~x denotes the position
vector of M , ~n denotes the unit normal to M , and dA is the area
element of M .

6. Write the structure equation of an orthonormal frame on a Riemann-
ian manifold. Prove the following Riemannian metric g has constant
sectional curvature c using the structure equation:

g =

∑n
i=1(dxi)2

[1 + c
4

∑n
i=1(x

i)2]2

where (x1, . . . , xn) is a local coordinate system.

1
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Algebra and Number Theory

1. Prove that the polynomial x6 + 30x5 − 15x3 + 6x − 120 cannot be
written as a product of two polynomials of rational coefficients and
positive degrees.

2. Let Fp be the field of p-elements and GLn(Fp) the group of invertible
n by n matrices.

(1) Compute the order of GLn(Fp).
(2) Find a Sylow p-subgroup of GLn(Fp).
(3) Compute the number of Sylow p-subgroups.

3. Let V be a finite dimensional vector space over complex field C with
a nondegenerate symmetric bilinear form (, ). Let

O(V ) = {g ∈ GL(V )|(gu, gv) = (u, v), u, v ∈ V }
be the orthogonal group. Prove that fixed point subspace (V ⊗C V )O(n)

is 1-dimensional.

4. Let D be the ring consisting of all linear differential operators of
finite order on R with polynomial coefficients, of the form

D =
n∑

i=0

ai(x)
di

dxi

for some natural number n ∈ N and polynomials a0(x), · · · , an(x) ∈
R[x]. This ring R operates naturally on M := R[x], making M a left
D-module.

(1) (to warm up) Suppose that b(x) ∈ R[x] is a non-zero polynomial
in M , and let c(x) be any element in M . Show that there is an
element D ∈ D such that D(b(x)) = c(x).

(2) Suppose that m is a positive integer, b1(x), · · · , bm(x) are m
polynomials inM linearly independent over R and c1(x), · · · , cm(x)
are m polynomials in M . Prove that there exists an element
D ∈ D such that D(bi(x)) = ci(x) for i = 1, · · · ,m.

5. Let Λ be a lattice of C, i.e., a subgroup generated by two R-linear
independent elements. Let R be the subring of C consists of elements
α such that αΛ ⊂ Λ. Let R× denote the group of invertible elements
in R.

(1) Show that either R = Z or have rank 2 over Z.
1
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(2) Let n ≥ 3 be a positive integer and (R/nR)× the group of invert-
ible elements in the quotient R/nR. Show that the canonical
group homomorphism

R× → (R/nR)×

is injective.
(3) Find maximal size of R×.

6. Let V be a (possible) infinite dimensional vector space over R with
a positive definite quadratic norm ‖ · ‖. Let A be an additive subgroup
of V with following properties:

(1) A/2A is finite;
(2) for any real number c the set

{a ∈ A : ‖a‖ < c}
is finite.

Prove that A is of finite rank over Z.
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S.-T YAU COLLEGE MATH CONTESTS 2012

Applied Math. and Computational Math.

Please solve 4 out of the following 5 problems.

1. In the numerical integration formula

(1)

∫ 1

−1

f(x)dx ≈ af(−1) + bf(c),

if the constants a, b, c can be chosen arbitrarily, what is the highest
degree k such that the formula is exact for all polynomials of degree
up to k? Find the constants a, b, c for which the formula is exact for
all polynomials of degree up to this k.

2. Here is the definition of a moving least square approximation of a
function f(x) near a point x given K points xk around x in R, k ∈
[1, · · · , K].

(2) min
Px∈Πm

K∑

k=1

|Px(xk)− fk|2

where fk = f(xk), Πm is the space of polynomials of degree less or
equal to m, i.e.

Px(x) = bx(x)Tc(x),

c(x) = [c0, c1, · · · , cm]T is the coefficient vector to be determined by (2),

bx(x) is the polynomial basis vector, bx(x) = [1, x− x, (x− x)2, . . . , (x− x)m]
T
.

Assume that there are K > m different points xk and f(x) is smooth,
(a) prove that there is a unique solution P x(x) to (2)
(b) denote h = maxk |xk − x|, prove

|ci − 1

i!
f (i)(x)| = C(f, i)hm+1−i, i = 0, 1, . . . , m,

where f (i)(·) is the i-th derivative of f and C(f, i) denote some constant
depending on f, i.
(c) if S = {xk|k = 1, 2, . . . , K} are symmetrically distributed around
x, that is, if xk ∈ S then 2x− xk ∈ S, prove that

|ci − 1

i!
f (i)(x)| = C(f, i)hm+2−i, i = 0, 1, . . . , m,

1
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for i (∈ {0, 1, · · · ,m}) with the same parity of m.

3. Describe the forward-in-time and center-in-space finite difference
scheme for the one-wave wave equation:

ut + ux = 0.

(i). Conduct the von Neumann stability analysis and comment on
their stability property.

(ii). Under what condition on ∆t and ∆x would this scheme be
stable and convergent?

(iii). How many ways you can modify this scheme to make it stable
when the CFL condition is satisfied.

4. Let C and D in Cn×n be Hermitian matrices. Denote their eigen-
values by

λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn,

respectively. Then it is known that

n∑
i=1

(λi − µi)
2 ≤ ‖C −D‖2

F .

1) Let A and B be in Cn×n. Denote their singular values by

σ1 ≥ σ2 ≥ · · · ≥ σn and τ1 ≥ τ2 ≥ · · · ≥ τn,

respectively. Prove that the following inequality holds:

n∑
i=1

(σi − τi)
2 ≤ ‖A−B‖2

F .

2) Given A ∈ Rn×n and its SVD is A = UΣV T , where U =
(u1,u2, . . . ,un), V = (v1,v2, . . . ,vn) are orthogonal matrices,
and

Σ = diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Suppose rank(A) > k and denote by

Uk = (u1,u2, . . . ,uk), Vk = (v1,v2, . . . ,vk), Σk = diag(σ1, σ2, . . . , σk),

and

Ak = UkΣkV
T
k =

k∑
i=1

σiuiv
T
i .

Prove that

min
rank(B)=k

‖A−B‖2
F = ‖A− Ak‖2

F =
n∑

i=k+1

σ2
i .
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3) Let the vectors xi ∈ Rn, i = 1, 2, . . . , n, be in the space W with
dimension d, where d ¿ n. Let the orthonormal basis of W be
W ∈ Rn×d. Then we can represent xi by

xi = c + Wri + ei, i = 1, 2, . . . , n,

where c ∈ Rn is a constant vector, ri ∈ Rd is the coordinate
of the point xi in the space W , and ei is the error. Denote
R = (r1, r2, . . . , rn) and E = (e1, e2, . . . , en). Find W , R and c
such that the error ‖E‖F is minimized.
(Hint: write X = [x1,x2, . . . ,xn] = c(1, 1, . . . , 1) + WR + E.)

5. Two primes p and q are called twin primes if q = p + 2. For
example, 5 and 7, 11 and 13, 29 and 31 are twin primes. There is
a still unproven (but extensively numerically verified) conjecture that
there are infinitely many twin primes and that they are rather common.
Show how to factor an integer N which is a product of two twin primes.



INDIVIDUAL TEST
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Probability and Statistics

Please solve 5 out of the following 6 problems,
or highest scores of 5 problems will be counted.

1. Solve the following two problems:
1) An urn contains b black balls and r red balls. One of the balls was

drawn at random, and putted back in the urn with a additional balls
of the same color. Now suppose that the second ball drawn at random
is red. What is the probability that the first ball drawn was black?

2) Let (Xn) be a sequence of random variables satisfying

lim
a→∞

sup
n≥1

P (|Xn| > a) = 0.

Assume that sequence of random variables (Yn) converges to 0 in prob-
ability. Prove that (XnYn) converges to 0 in probability.

2. Solve the following two problems:
1) Let (Ω,F , P ) be a probability space, G be a sub-algebra of F .

Assume that X is a non-negative integrable random variable. Set Y =
E[X|G]. Prove that

(a)[X > 0] ⊂ [Y > 0],a.s.;
(b)[Y > 0] = ess.inf{A : A ∈ G, [X > 0] ⊂ A}.
2) Let X and Y have a bivariate normal distribution with zero means,

variances σ2 and τ 2, respectively, and correlation ρ. Find the condi-
tional expectation E(X|X + Y ).

3. Suppose that {p(i, j) : i = 1, 2, · · · ,m; j = 1, 2, · · · , n} is a finite
bivariate joint probability distribution, that is,

p(i, j) > 0,
m∑

i=1

n∑
j=1

p(i, j) = 1.

(i) Can {p(i, j)} be always expressed as

p(i, j) =
∑

k

λkak(i)bk(j)

for some finite λk ≥ 0,
∑

k λk = 1, ak(i) ≥ 0,
∑m

i=1 ak(i) = 1, bk(j) ≥
0,

∑n
j=1 bk(j) = 1?

1
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(ii) Prove or disprove the above relation by use of conditional prob-
ability.

4. Let X1, · · · , Xm be an independent and identically distributed (i.i.d.)
random sample from a cumulative distribution function (CDF) F , and
Y1, · · · , Yn an i.i.d. random sample from a CDF G. We want to test
H0 : F = G versus H1 : F 6= G. The total sample size is N = m + n.
Consider the following two nonparametric tests.

• The Wilcoxon rank sum tests. The test proceeds by first rank-
ing the pooled X and Y samples and then taking the sum of the
ranks associated with the Y sample. Let Ry1 , · · · , Ryn be the
rankings of the sample y1 < · · · < yn from the pooled sample
in increasing order. The Wilcoxon rank sum statistic is defined
as W =

∑n
j=1 Ryj

.
• The Mann-Whitney U -test. Let Uij = 1 if Xi < Yj, and

Uij = 0 otherwise. The Mann-Whitney U -statistic is defined
as U =

∑m
i=1

∑n
j=1 Uij. The probability γ = P (X < Y ) can be

estimated as U/(mn). The decision rule is based on assessing
if γ = 0.5.

Assume that there are no tied data values.

(a) Show that W = U + 1
2
n(n + 1), which shows that the two test

statistics differ only by a constant and yield exactly the same
p-values.

(b) Using the central limit theorem, the Wilcoxon rank sum statis-
tic W can be converted to a Z-variable, which provides an easy-
to-use approximation. The transformation is

ZW =
W − µW

σW

,

where µW and σ2
W are the mean and variance of W under H0.

Show that µW = 1
2
n(N + 1) and σ2

W = 1
12

mn(N + 1).

5. Let X be a random variable with EX2 < ∞, and Y = |X|. Assume
that X has a Lebesgue density symmetric about 0. Show that random
variables X and Y are uncorrelated, but they are not independent.

6. Let E1, · · · , En be i.i.d. random variables with Ei ∼ Exponential(1).
Let U1, · · · , Un be i.i.d. uniformly (on [0,1]) distributed random vari-
ables. Further, assume that E1, · · · , En and U1, · · · , Un are indepen-
dent.

(a) Find the density of X = (E1 + · · ·+Em)/(E1 + · · ·+En), where
m < n.

(b) Show that Y = (n−m)X
m(1−X)

is distributed as the F-distribution with

degrees of freedom (2m, 2(n−m))
(c) Find the density of (U1 · · ·Un)−X .
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Analysis and Differential Equations

Please solve 5 out of the following 6 problems.

1. Let A = [aij] be a real symmetric n×n matrix. Define f : Rn → R
by f(x1, · · · , xn) = exp(−1

2

∑n
i,j=1 aijxixj). Prove that f is in L1(Rn)

if and only if the matrix A is positive definite.
Compute

∫
Rn exp(−1

2

∑n
i,j=1 aijxixj +Σn

i=1bixi)dx when A is positive
definite.

2. Let V be a simply connected region in the complex plane and V 6= C.
Let a, b be two distinct points in V . Let φ1, φ2 be two one-to-one
holomorphic maps of V onto itself. If φ1(a) = φ2(a) and φ1(b) = φ2(b),
show that φ1(z) = φ2(z) for all z ∈ V .

3. In the unit interval [0, 1] consider a subset
E = {x| in the decimal expansion of x there is no 4},
show that E is measurable and calculate its measure.

4. Let 1 < p < ∞, Lp([0, 1], dm) be the completion of C[0, 1] with the

norm: ||f ||p = (
∫ 1

0
|f(x)|pdm)

1
p , where dm is the Lebesgue measure.

Show that limλ→∞ λpm(x||f(x)| > λ) = 0.

5. Let F = {eν}, ν = 1, 2, ..., n or ν = 1, 2, ... is an orthonormal basis in
an inner product space H. Let E be the closed linear subspace spanned
by F. For any x ∈ H show that the following are equivalent: 1) x ∈ E;
2) ||x||2 = Σν |(x, eν)|2; 3) x = Σν(x, eν)eν .

Let H = L2[0, 2π] with the inner product < f, g >= 1
π

∫ 2π

0
f(x)g(x)dx,

F = {1
2
, cos x, sin x, ..., cos nx, sin nx, ...}

be an orthonormal basis. Show that the closed linear sub-space E
spanned by F is H.

6. LetH = L2[0, 1] relative to the Lebesgue measure and define (Kf)(s) =∫ s

0
f(t)dt for each f in H. Show that K is a compact operator without

eigenvalues.

1
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Geometry and Topology

Please solve 5 out of the following 6 problems.

1. Prove that the real projective space RPn is a differentiable manifold
of dimension n.

2. Let M , N be n-dimensional smooth, compact, connected manifolds,
and f : M → N a smooth map with rank equals to n everywhere.
Show that f is a covering map.

3. Given any Riemannian manifold (Mn, g), show that there exists a
unique Riemannian connection on Mn.

4. Let Sn be the unit sphere in Rn+1 and f : Sn → Sn a continuous
map. Assume that the degree of f is an odd integer. Show that there
exists x0 ∈ Sn such that f(−x0) = −f(x0).

5. State and prove the Stokes theorem for oriented compact manifolds.

6. Let M be a surface in R3. Let D be a simply-connected domain
in M such that the boundary ∂D is compact and consists of a finite
number of smooth curves. Prove the Gauss-Bonnet Formula:∫

∂D

kg ds +
∑

j

(π − αj) +

∫∫

D

K dA = 2π,

where kg is the geodesic curvature of the boundary curve. Each αj

is the interior angle at a vertex of the boundary, K is the Gaussian
curvature of M , and the 2-form dA is the area element of M .

1
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Algebra and Number Theory

1. Let a1, · · · , an and b1, · · · , bn be complex numbers such that ai+bj 6=
0 for all i, j = 1, · · · , n. Define cij :=

1

ai + bj
for all i, j = 1, · · · , n, and

let C be the n× n determinant with entries cij. Prove that

det(C) =

∏
1≤i<j≤n(ai − aj)(bi − bj)∏

1≤i,j≤n(ai + bj)
.

2. Recall that F7 is the finite field with 7 elements, and GL3(F7) is the
group of all invertible 3× 3 matrices with entries in F7.

(1) Find a 7-Sylow subgroup P7 of GL3(F7).
(2) Determine the normalizer subgroup N of the 7-Sylow subgroup

you found in (a).
(3) Find a 2-Sylow subgroup of GL3(F7).

3. Let V be a finite dimensional vector space with a positive definite
quadratic form (−,−). Let O(V ) denote the orthogonal group:

O(V ) = {g ∈ GL(V ) : (gx, gy) = (x, y), ∀x, y ∈ V } .
For any non-zero v ∈ V , let sv denote the reflection on V :

sv(w) = w − 2
(v, w)

(v, v)
v.

(1) Show that sv ∈ O(V );
(2) Show that if v and w are vectors in V with ‖v‖ = ‖w‖,then

there is either a reflection or product of two reflections that
takes v into w;

(3) Deduce that every element of the orthogonal group of V can be
written as the product of at most 2 dimV reflections.

4. Consider the real Lie group SL2(R) of 2 by 2 matrices of determinant
one. Compute the fundamental group of SL2(R) and describe the Lie
group structure on the universal covering

S̃L2(R)→ SL2(R).

5. Let f ∈ C[x, y, z] be an irreducible homogenous polynomial of degree
d > 0. For each integer n ≥ d, define

P (n) = dimC C[x, y, z]n/f · C[x, y, z]n−d
1

Hao
Text Box
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Please solve 5 out of the following 6 problems.
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where C[x, y, z]d is the subspace of homogenous polynomials of degree
n. Show there are constants c such that for n sufficiently large,

P (n) = dn + c.

6. Let p be an odd prime and Zp the p-adic integer which can be
defined as the projective limit of Z/pnZ and let Qp be its fractional
field. Let Z×p denote the group of invertible elements in Zp which is
also the projective limit of (Z/pnZ)×.

(1) For any integer a is not divisible by p, show that the sequence
(ap

n
)n convergent to an element ω(a) ∈ Zp satisfying

ω(a)p−1 = 1, ω(a) ≡ a (mod p).

Moreover, ω(a) depends only on a mod p.
(2) Define a logarithmic function log on 1 + pZp by usual formula:

log(1 + px) =
∞∑
n=1

(−1)n−1
pn

n
xn.

Show that the logarithmic function is convergent and define an
isomorphism

1 + pZp → pZp.

Moreover, on the dense subgroup log(1 + p)Z, the inverse is
given by

log(1 + p) · x 7→ (1 + p)x, ∀x ∈ Z.
(3) Deduce from above that Z×p ' Zp × Z/(p− 1)Z.



GROUP TEST
S.-T YAU COLLEGE MATH CONTESTS 2012

Applied Math. and Computational Math.

Please solve 4 out of the following 5 problems.

1. If the function u(x) is in Ck+1 (has continuous (k + 1)-th deriva-
tive) on the interval [0, 2], and a sequence of polynomials pn(x) (n =
1, 2, 3, ...) of degree at most k satisfies

(1) |u(x)− pn(x)| ≤ C

nk+1
∀ 0 ≤ x ≤ 1

n
,

where the constant C is independent of n, prove

|u(x)− pn(x)| ≤ C̃

nk+1
∀ 1

n
≤ x ≤ 2

n
,

with another constant C̃ which is also independent of n.

2. Consider the one-dimensional elliptic equation

− d2

dx2
u(x) = f(x), 0 < x < 1,

with homogeneous boundary condition, u(0) = 0 and u(1) = 0, f ∈
L2(0, 1).

(i) Describe the standard piecewise linear finite element method for
this boundary value problem.

(ii) Is this method stable and convergent? If so, what is the order of
convergence?

(iii). In this case, the linear finite element method has a super con-
vergence property at the nodal point xj (j = 1, 2, ..., N), i.e. uh(xj) =
u(xj), here uh is the finite element solution and u is the exact solution.
Could you explain why?

3. Let A = (aij) ∈ MN×N(C) be strictly diagonally dominant, that is,

|aii| >
N∑

j=1,j 6=i

|aij| for all 1 ≤ i ≤ N,

Assume that A = I +L+U where I is the identity matrix, L and U
are the lower and upper triangular matrices with zero diagonal entries.

1
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Now, we consider solving the linear system Ax = b by the following
iterative scheme:

(∗) xk+1 = (I +αΩL)−1[(I−Ω)− (1−α)ΩL−ΩU)]xk +(I +αΩL)−1b

where Ω := diag(ω1, ...ωN) and 0 ≤ α ≤ 1. (When α = 1, it gives the
SOR method.)

(1) Prove that the linear system Ax = b has a unique solution.
(2) Prove that the necessary condition for the convergence of (*) is

N∏
i=1

|1− ωi| < 1

(3) Let M = (I + αΩL)−1[(I −Ω)− (1−α)ΩL−ΩU)]. Prove that
the spectral radius ρ(M) of M is bounded by:

ρ(M) ≤ max
i

|1− ωi|+ |ωi|(|1− α|li + ui)

1− |ωiα|li
whenever |ωiα|li for all 1 ≤ i ≤ N where li =

∑
j<i |aij| and

ui =
∑

j>i |aij|.
(4) Using (c), prove that the sufficient condition for the convergence

of (*) is

0 < ωi <
2

1 + li + ui

for all 1 ≤ i ≤ N

4. The famous RSA cryptosystem is based on the assumed difficulty of
factoring integers N = pq (called RSA integers) which are products of
two large primes p and q which should be kept secret. Currently p and
q are chosen to be about 500 bits long, that is,

p, q ≈ 2500.

Assume someone uses the following algorithm to find secret n-bit primes
p and q to form an RSA integer N = pq:

• Choose a random odd 500-bit integer s.
• Test the odd numbers s, s+2, s+4, etc. for primality until the

first prime p is found (note the primality testing is very easy
nowdays).

• Continue testing p + 2, p + 4, p + 6, etc. for primality until the
second prime q is found.

• Compute and publish N = pq, but keep p and q secret.

How secure is this procedure? Can you suggest an algorithm to factor
an RSA integer N = pq generated this way?

Note that there are about x/ log x primes up to x, where log x is
the natural logarithm. This means that the expected gap between two
consecutive n-bit primes is

log 2n = n log 2 ≈ 0.69 · n.
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5. The solution h(r, t) of the following Boussinesq equation describes
the hight of a circular drop of fluid spreading on a dry surface h = 0:

∂h

∂t
= ∆r(h

2) =
1

r

∂

∂r

(
r
∂(h2)

∂r

)
, r > 0, t > 1

with
∂h

∂r

∣∣∣
r=0

= 0,

∫ ∞

0

h(r, t)rdr ≡ 1

64

The solution is positive on a finite range 0 ≤ r ≤ r∗(t) with h(r∗(t), t) =
0 defining a moving “edge” position with no fluid outside of the droplet.
For r > r∗(t) truncate the solution beyond the edge to be zero ( h ≡ 0
for r > r∗(t)).

(a): Show that this problem is scale invariant by finding relations

h(r, t) = H(T )h̃(r̃, t̃), r = R(T )r̃, t = T t̃ so that the problem

for h̃(r̃, t̃) is identical to the original problem.
(b): Determine the ODE for the similarity function Φ(η) with

h(r, t) = tαΦ(η), r = ηtβ.
(c): Determine the explicit solution for Φ(η) and then use h(r, t) =

tαΦ(η) to find r∗(t) for t ≥ 1.
Hint

∫∞
0

hrdr =
∫ r∗

0
hrdr.
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Probability and Statistics

Please solve 5 out of the following 6 problems.

1. Let (Xn) be a sequence of i.i.d. random variables.
1) Assume that each Xn satisfies the exponential distribution with

parameter 1 (i.e. P (Xn ≥ x) = e−x, x ≥ 0). Prove that
(a) P (X > α log n, i.o.) = 0, if α > 1; P (X > α log n, i.o.) = 1, if

α ≤ 1.
Here “i.o” stands for “infinitely often”, and An, i.o. stands lim supn→∞ An.
(b) Let L = lim supn→∞(Xn/ log n), then P (L = 1) = 1.
2) Assume that each Xn satisfies the Poisson distribution with pa-

rameter λ (i.e. P (Xn = k) = λk

k!
e−λ, k = 0, 1, 2, · · · .) Put

L = lim sup
n→∞

(Xn log log n/ log n).

Prove that P (L = 1) = 1.

2. Let Xi be i.i.d exponential r.v with rate one, i ≥ 1. Let N be a
geometric random variable with success probability p, 0 < p < 1, i.e.
P (N = k) = (1−p)k−1p, k = 1, 2, · · · , and independent of all Xi, i ≥ 1.

Find the distribution of
∑N

i=1 Xi.

3. Let X and Y be i.i.d real valued r.v’s. Prove that P (|X +Y | < 1) ≤
3P (|X − Y | < 1).

4. Suppose S = X1 + X2 + · · · + Xn, a sum of independent random
variables with Xi distributed Binomial(1, pi). Show that P(S even) =
1/2 if and only if at least one pi equals 1/2.

5. Let Bθ denote the closed unit ball in R2 with center θ. Suppose
X1, X2, · · · , Xn are independently distributed on Bθ, for an unknown
θ in R2. Denote that maximum likelihood estimator by θ̂. Show that
|θ̂ − θ| = Op(1/n).

6. Suppose that X1, · · · , Xn are a random sample from the Bernoulli
distribution with probability of success p1 and Y1, · · · , Yn be an inde-
pendent random sample from the Bernoulli distribution with probabil-
ity of success p2.

1
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(a) Derive the maximum likelihood ratio test statistic for

H0 : p1 = p2 ←→ H1 : p1 6= p2.

(Note: No simplification of the resulting test statistic is re-
quired. However, you need to give the asymptotic null.)

(b) Compute the asymptotic power of the test with critical region

|√n(p̂1 − p̂2)/
√

2p̂q̂| > z1−α

when p1 = p and p2 = p + n−1/2∆, where p̂ = 0.5.p̂1 + 0.5p̂2.
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Analysis and Differential Equations
Individual

Please solve 5 out of the following 6 problems.

1. Suppose that f is an integrable function on Rd. For each α > 0, let
Eα = {x||f(x)| > α}. Prove that:∫

Rd

|f(x)|dx =

∫ ∞

0

m(Eα)dα.

2. Let p(z) be a polynomial of degree d ≥ 2, with distinct roots
a1, a2, · · · , ad. Show that

d∑
i=1

1

p′(ai)
= 0.

3. Let α be a number such that α/π is not a rational number. Show
that:

1) limN→∞ ΣN
n=1e

ik(x+nα) = 1
2π

∫ π

−π
eiktdt.

2) For every continuous periodic function f : R → C of period 2π,
we have

lim
N→∞

1

N
ΣN

n=1f(x+ nα) =
1

2π

∫ π

−π

f(t)dt.

4. Let u be a positive harmonic function over the punctured complex
plane C/{0}. Show that u must be a constant function.

5. Suppose H = L2(B), B is the unit ball in Rd. Let K(x, y) be a
measurable function on B ×B that satisfies

|K(x, y)| ≤ A|x− y|−d+α

for some α > 0, whenever x, y ∈ B. Define

Tf(x) =

∫
B

K(x, y)f(y)dy

(a) Prove that T is a bounded operator on H.
(b) Prove that T is compact.

6. Let A be a n×n real non-degenerate symmetric matrix. For λ ∈ R+,
we define:

∫
R
exp(iλx2)dx = limϵ→0+

∫∞
−∞ exp(iλx2 − 1

2
ϵx2)dx. Show

that:
1
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∫
Rn

exp(i
λ

2
< Ax, x > −i < x, ξ >)dx

= (
2π

λ
)n/2| det(A)|−1/2 exp(− i

2λ
< A−1ξ, ξ >) exp(

iπ

4
sgnA).

Here λ ∈ R+, ξ ∈ Rn, sgn(A) = ν+(A)− ν−(A), ν+(A)(ν−(A)) is the
number of positive (negative) eigenvalues of A.
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Geometry and Topology
Individual

Please solve 5 out of the following 6 problems.

1. Find the homology and fundamental group of the space X = S1 ×
S1/{p, q} obtained from the torus by identifying two distinct points
p, q to one point.

2. Suppose (X, d) is a compact metric space and f : X → X is a map
so that d(f(x), f(y)) = d(x, y) for all x, y ∈ X. Show that f is an onto
map.

3. LetM2 ba a complete regular surface and K be the Gaussian curva-
ture. Suppose σ : [0,∞) → M is a geodesic such that K(σ(t)) ≤ f(t),
where f is a differentiable function on [0,∞). Prove that any solution
u(t) of the equation

u′′(t) + f(t)u(t) = 0

has a zero on [0, t0], where σ(t0) is the first conjugate point to σ(0)
along σ.

4. Let g1, g2 be Riemannian metrics on a differentiable manifold M ,
and denote by R1 and R2 their respective Riemannian curvature tensor.
Suppose that R1(X, Y, Y,X) = R2(X, Y, Y,X) holds for any tangent
vectors X, Y ∈ TpM . Show that R1(X,Y, Z,W ) = R2(X,Y, Z,W ) for
any X, Y , Z, W ∈ TpM .

5. Let Mn be an even dimensional, orientable Riemannian manifold
with positive sectional curvature. Let σ : [0, l] → M be a closed
geodesic, namely, σ is a geodesic with σ(0) = σ(l) and σ′(0) = σ′(l).
Show that there exist an ϵ > 0 and a smooth map F : [0, l]× (−ϵ, ϵ) →
M , such that F (t, 0) = σ(t), and for any fixed s ̸= 0 in (−ϵ, ϵ), σs(t) =
F (t, s) is a closed smooth curve with length less than that of σ.

6. Let (M2, ds2) be a minimal surface in R3, where ds2 is the restriction
of the Euclidean metric. Assume that the Gaussian curvature K of
(M2, ds2) is negative. Denote by K̃ the Gaussian curvature of the

metric d̃s2 = −Kds2. Show that K̃ = 1.

1
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Algebra and Number Theory
Individual

This exam of 160 points is designed to test how much you
know rather than how much you don’t know. You are not
expected to finish all problems but do as much as you can.

1. (20pt)

1.1 (15 pt) Classify finite groups of order 26 up to isomorphisms.

1.2 (5 pt) For each finite group G of order 26, describe the group Aut(G)
of automorphisms of G.

2. (20 pt) Consider f ∈ Z>0 and nonzero vector spaces Vi indexed by i ∈
Z/fZ. Suppose that there are linear maps φi : Vi → Vi+1 and ψi : Vi → Vi−1
such that

φi−1 ◦ ψi = 0, ψi+1 ◦ φi = 0.

(We may think of a circular graph with oriented edges such that the “Orpheus
condition” holds: Whenever you turn back while traveling through the graph
you are killed.)

Prove that there exists lines `i ⊂ Vi for every i ∈ Z/fZ such that

φi(`i) ⊂ `i+1, ψi(`i) ⊂ `i−1

under one of the following two conditions:

2.1 (10 pt) all ψi = 0, or

2.2 (10 pt) dimVi are equal to each other.

3. (20pt) For a parameter t = (t0, t1, · · · t5) ∈ F6
5 with t0 6= 0 and {ti, i > 0}

an ordering of elements in F5, define a polynomial

Pt(x) = (x− t1)(x− t2)(x− t3) + t0(x− t4)(x− t5).

1



3.1 (7 pt) Show that Pt(x) is irreducible in F5[x];

3.2 (6 pt) Show that two parameters t, t′ give the same polynomial if and
only if t0 = t′0 and {t4, t5} = {t′4, t′5}.

3.3 (7 pt) Show that every irreducible cubic monic polynomial over F5 is
obtained by this way.

4. (40 pt) For k non-negative integer, let Vk := R[x]≤k be the vector space
of real polynomials of degree at most k with an action by SL2(R) by

γ · P (x) = (cx+ d)kP

(
ax+ b

cx+ d

)
, γ =

(
a b
c d

)
∈ SL2(R).

4.1 (20 pt) Show that Vk is an irreducible representation of SL2(R);

4.2 (15 pt) For non-negative integers m,n, consider Vm,n := Vm ⊗ Vn as
a subspace of C[x, y] of polynomials with both x, y-degrees at most
k, with diagonal action of SL2(R). Assume m ≥ n ≥ 1. Show that
following exact sequence is exact and split as representations of SL2(R).

0−→Vm−1,n−1
·(y−x)−→ Vm,n

y=x−→Vm+n−→0.

This implies the following decomposition of representations:

Vm ⊗ Vn = ⊕n
i=0Vm+n−2i.

4.3 (5 pt) For non-negative integers ` ≥ m ≥ n consider the space of
invariants (V`⊗Vm⊗Vn)SL2(R). Show that this space is either trivial or
one-dimensional; it is non-trivial if and only if

`+m+ n ≡ 0 mod 2, `+m ≥ n.

5. (60 pt)

5.1 (20pt) Find a polynomial f(x) with integer coefficients which has a
root over Fp for each prime p but has not root over Q.

5.2 (20pt) Can you find f irreducible?

5.3 (20pt) What is the smallest possible degree of f?

2



S.-T. Yau College Student Mathematics Contests 2013

Applied Math. and Computational Math.
Individual

Please solve as many problems as you can!

1. We consider the wave equation utt = ∆u in R3 × R+.

(a): (5 pts) A right going pulse with speed 1

u(x, y, z, t) = 1 for t < x < t+ 1; u(x, y, z, t) = 0 else

is clearly a solution to the wave equation. However, it is a
discontinuous solution, explain in which sense it is a solution to
the equation.

(b): (5 pts) Surprisingly, one can construct smooth progressive
wave solutions with speed larger than 1. In astronomy this
kind of wave known as superluminal wave. Try a solution of
the form

u(x, y, z, t) = v(
x− ct√
c2 − 1

, y, z), c ∈ R3, |c| > 1.

Derive an equation for v and show that there is a nontrivial
solution with compact support in (y, z) for any fixed x, t.

(c): (5 pts) For any R > 0, 0 < t < R, show that energy

E(t) :=

∫
|x⃗|≤R−t

(
|ut(·, t)|2 + |∇u(·, t)|2

)
dx⃗

is a decreasing function.
(c): (10 pts) Show that smooth superluminal progressive wave

solutions of the form

u(x⃗, t) = v(x⃗− c⃗t), c⃗ ∈ R3, |⃗c| > 1.

cannot have a finite energy.
Hint: Using (c) and look at the energy of the solution in

various balls.

2. Finite time extinction and hyper-contractiveity are important prop-
erties in modeling of some physical and biology systems. The essence
of estimates is given by the following problem for ODE.

Assume y(t) ≥ 0 is a C1 function for t > 0 satisfying y′(t) ≤ α −
βy(t)a for α > 0, β > 0, then

(a) (10 points) For a > 1, y(t) has the following hyper-contractive
property

y(t) ≤ (α/β)1/a +

[
1

β(a− 1)t

] 1
a−1

, for t > 0.

1
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(b) (2 points) For a = 1, y(t) decays exponentially

y(t) ≤ α/β + y(0)e−βt.

(c) (10 points) For a < 1, α = 0, y(t) has finite time extinction,

which means that there exists Text such that 0 < Text ≤ y1−a(0)
β(1−a)

and that y(t) = 0 for all t > Text.

3. Consider the speed v of a ball (density ρ, radius R) falling through
a viscous fluid (density ρf , viscosity µ) with drag coefficient given by
Stokes’ law ζ = 6πRµ:

4

3
πR3ρ

dv

dt
=

4

3
πR3(ρ− ρf )g − ζv, v(0) = v0

(a): (5 points) Nondimensionalize the equation by writing, v(t) =
V ṽ(t̃) with t = T t̃. Select V , T (characteristic scales known
as terminal velocity and settling time respectively) so that all
coefficients in the ODE but one are equal to 1. Your equation
will have a single dimensionless parameter given by the ratio of
the initial speed v0 to the characteristic speed V .

(b): (2 points) Solve the nondimensional problem for ṽ(t̃).
(c): (8 points) Describe the behavior of the solution if the initial

speed v0 is (i) faster than and (ii) slower than the characteristic
speed V . Compute the time to reach (v0 + V )/2.

4. Let

Vh = {v : v|Ij ∈ P k(Ij) 1 ≤ j ≤ N}
where

Ij = (xj−1, xj), 1 ≤ j ≤ N

with

xj = jh, h =
1

N
.

Here P k(Ij) denotes the set of polynomials of degree at most k in the
interval Ij.

Recall the L2 projection of a function u(x) into the space Vh is defined
by the unique function uh ∈ Vh which satisfies

||u− uh|| ≤ ||u− v|| ∀v ∈ Vh

where the norm is the usual L2 norm. We assume u(x) has at least
k + 2 continuous derivatives.

(1) (5 points) Prove the error estimate

||u− uh|| ≤ Chk+1

Explain how the constant C depends on the derivatives of u(x).
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(2) (10 points) If another function φ(x) also has at least k + 2
continuous derivatives, prove

|
∫ 1

0

(u(x)− uh(x))φ(x)dx| ≤ Ch2k+2

Explain how the constant C depends on the derivatives of u(x)
and φ(x).

5. (15 points) Let G(V,E) be a simple graph of order n and δ the
minimum degree of vertices. Suppose that the degree sum of any pair
of nonadjacent vertices is at least n and F ⊂ E with |F | ≤ ⌊ δ−2

2
⌋. Let

G−F be the graph obtained from G by deleting the edges in F . Prove
that

(1) G− F is connected and
(2) G− F is Hamiltonian.

6. (15 points) Let (Fn)n be the Fibonacci sequence. Namely, F0 =
0, F1 = 1, . . . , Fn+2 = Fn+1 + Fn.

Establish a relation between

(
0 1
1 1

)n

and Fn and use it to design

an efficient algorithm that for a given n computes the n-th Fibonacci
number Fn. In particular, it must be more efficient than computing
Fn in n consecutive steps.

Give an estimate on the number of steps of your algorithm.

Hint: Not that if m is even then(
0 1
1 1

)m

=

((
0 1
1 1

)m/2
)2

and if m is odd then(
0 1
1 1

)m

=

(
0 1
1 1

)m−1

·
(
0 1
1 1

)
and m− 1 is even.



S.-T. Yau College Student Mathematics Contests 2013

Probability and Statistics Problems

Individual

Please solve 5 out of the following 6 problems.

Problem 1. Let (Xn) be a sequence of random variables.

(1) Assume that
∑∞

n=0 P (|Xn| > n) <∞. Prove that lim supn→∞
|Xn|
n

≤ 1.

(2) Prove that (Xn) converges in probability to 0 if and only if for certain r > 0,

E
[

|Xn|r
1+|Xn|r

]
→ 0.

Problem 2. Let X and Y be independent N(0, 1) random variables.

(1) Find E[X + Y |X ≥ 0, Y ≥ 0];

(2) Find the distribution function of X + Y given that X ≥ 0 and Y ≥ 0.

(Hint: For b) using the fact that U = (X + Y )/
√
2 and V = (X − Y )/

√
2 are

independent and N(0, 1) distributed.)

Problem 3. Let {Xn} be a sequence of independent and identically distributed con-

tinuous real valued random variables, and regard n as time. Let An be the following

event:

An = {Xn = max{X1, X2, · · · , Xn}}.

We say that a maximum record occurs at n in such an event.

(1) Evaluate the probability P (An).

(2) Denote by Yn the number of maximum records occurred until time n, i.e.,

Yn = the number of {1 ≤ k ≤ n : Xk = max{X1, X2, · · · , Xk}}.

Evaluate the expectation EYn and the variance DYn.

Problem 4. Let X = (X1, · · · , Xn) be an iid sample from an exponential density with

mean θ. Consider testing H0 : θ = θ0 vs. H1 : θ > θ0. Let P (X) = your p-value for an

appropriate test.

1



(a) What is Eθ0(P (X))? Derive your answer explicitly.

(b) Derive Eθ(P (X)) for θ ̸= θ0. Specifically, assuming only one sample, i.e. n = 1,

calculate Eθ(P (X)) as explicitly as possible for θ ̸= θ0.

(c) When there is only one sample, is Eθ(P (X)) a decreasing function of θ? In general,

can you prove your result for an arbitrary MLR family?

Problem 5. Let X1, X2 be iid uniform on θ − 1
2
to θ + 1

2
.

(a) Show that for any given 0 < α < 1, you can find c > 0 such that

Pθ{X̄ − c < θ < X̄ + c} = 1− α,

where X̄ is the sample mean.

(b) Show that for ϵ positive and sufficiently small

Pθ{X̄ − c < θ < X̄ + c
∣∣ |X2 −X1| ≥ 1− ϵ} = 1

(c) The statement in (a) is used to assert that X̄± c is a 100(1−α)% confidence interval

for θ. Does the assertion in (b) contradict this? If your sample observations are

X1 = 1, X2 = 2, would you use the confidence interval in (a)?

Problem 6. Suppose you want to estimate the total number of enemy tanks in a war on

the basis of the captured tanks. Assume without loss of generality that the tank serial

numbers are 1, 2, · · · , N , where N is the unknown total number of enemy tanks. Also

assume the serial numbers of the n captured tanks are iid uniform on 1, 2, · · · , N . (This

is a simplified assumption which provides a good approximation if n << N).

(a) Find the complete sufficient statistic.

(b) Suggest how you may find the minimum variance unbiased estimate of N .

2



S.-T. Yau College Student Mathematics Contests 2013

Analysis and Differential Equations
Team

Please solve 5 out of the following 6 problems.

1. Suppose ∆ = {z ∈ C | |z| < 1} is the open unit disk in the complex
plane. Show that for any holomorphic function f : ∆ → ∆,

(1)
|f ′(z)|

1− |f(z)|2
≤ 1

1− |z|2

for all z in ∆. If equality holds in (1) for some z0 ∈ ∆, show that
f ∈ Aut(∆), and that

|f ′(z)|
1− |f(z)|2

=
1

1− |z|2

for all z ∈ ∆.

2. Let f be a function of bounded variation on [a, b], f1 its generalized
derivative as a measure, i.e. f(x)−f(a) =

∫ x

a
f1(y)dy for every x ∈ [a, b]

and f1(x) is an integrable function on [a, b]. Let f
′
be its weak deriva-

tive as a generalized function, i.e.
∫ b

a
f(x)g

′
(x)dx = −

∫ b

a
f

′
(x)g(x)dx,

for any smooth function g(x) on [a, b], g(a) = g(b) = 0. Show that:
a) If f is absolutely continuous, then f

′
= f1.

b) If the weak derivative f
′
of f is an integrable function on [a, b],

then f(x) is equal to an absolutely continuous function outside a set
of measure zero.

3. Show that the convex hull of the roots of any polynomial contains
all its critical points as well as all the zeros of higher derivatives of the
polynomial. Here the convex hull of a given bounded set in the plane
is the smallest convex set containing the given set in the plane.

4. Let D ⊂ R3 be an open domain. Show that every smooth vector
field F = (P,Q,R) over D can be written as F = F1 + F2 such that
rot(F1) = 0, div(F2) = 0, where rot(F) = (∂R

∂y
− ∂Q

∂z
, ∂P
∂z

− ∂R
∂x
, ∂Q
∂x

−
∂P
∂y
), div(F) = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
.

5. Let H be a Hilbert space and A a compact self-adjoint linear op-
erator over H. Show that there exists an orthor-normal basis of H
consisting of eigenvectors φn of A with non-zero eigenvalues λn such
that every vector ξ ∈ H can be written as: ξ = Σkckφk + ξ

′
, where

ξ
′ ∈ KerA, i.e.,Aξ

′
= 0. We also have Aξ = Σkλkckφk.

If there are infinitely many eigenvectors then limn→∞ λn = 0.
1
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6. A function f : R → R is called convex if

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′)

for 0 ≤ λ ≤ 1 and each x, x′ ∈ R, and is called strictly convex if

f(λx+ (1− λ)x′) < λf(x) + (1− λ)f(x′)

for 0 < λ < 1. We assume that |f(x)| <∞ whenever |x| <∞.

(a) Show that a convex function f is continuous and the function

g(y) = max
x∈R

(xy − f(x))

is a well-defined convex function over R.
(b) Show that a convex function f is differentiable except at most

countably many points.
(c) f is differentiable everywhere if both f and g are strictly convex.



S.-T. Yau College Student Mathematics Contests 2013

Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Let X be the space

{(x, y, 0) | x2 + y2 = 1} ∪ {(x, 0, z) | x2 + z2 = 1}
Find the fundamental group π1(R3 \X).

2. Let M be a smooth connected manifold and f : M → M be an
injective smooth map such that f ◦ f = f . Show that the image set
f(M) is a smooth submanifold in M .

3. Let T 2 = {(z, w) ∈ C2 | |z| = 1, |w| = 1} be the torus. Define a map
f : T 2 → T 2 by f(z, w) = (zw3, w). Prove that f is a diffeomorphism.

4. Prove: Any 3-dimensional Einstein manifold has constant curvature.

5. State and prove the Myers theorem for complete Riemannian man-
ifolds.

6. Let C be a regular closed curve in R3. Its torsion is τ . The integral
1
2π

∫
C
τds is called the total torsion of C, where s is the arc length

parameter. Prove: Given a smooth surface M in R3, if for any regular
closed curve C on M , the total torsion of C is always an integer, then
M is a part of a sphere or a plane.

1



S.-T. Yau College Student Mathematics Contests 2013

Algebra and Number Theory
Team

The exam contains 6 problems. Please choose 5 of them to
work on.

1. (20pt) Let A be an n× n skew symmetric real matrix.

1.1 (10 pt) Prove that all eigenvalues of A are imaginary or zero and that
eA is orthogonal.

1.2 (10 pt) Find conditions on an orthogonal B such that B = eA is solvable
for some skew symmetric and real matrix A.

2. (20pt) Let E/F be a field extension. Let A be an m × m matrix with
entries in E such that tr(An) belongs to F for every n ≥ 2. Show that tr(A)
belongs to F by following steps.

2.1 (5pt) Show that there is a polynomial P (x) =
∑

i aix
i ∈ Ē[x] with

a0 = 1 such that ∑
i

aitr(Ai+k) = 0, ∀k ≥ 1.

2.2 (5pt) Show that we have a polynomial Q =
∑

i bix
i ∈ F [x] with b0 = 1

such that ∑
i

bitr(Ai+k) = 0, ∀k ≥ 2.

2.3 (5pt) Let t ∈ Ē be an eigenvalue of A with multiplicity m invertible in
F . Show that Q(t) = 0.

2.4 (5pt) Show that tr(A) belongs to F .

Hint: Let ti ∈ Ē be all distinct non-zero eigen values of A with multiplicity
mi invertible in F . Then

tr(An) =
∑
i

mit
n
i .

1



3. (20pt) Let p be a prime and G = SL2(Fp).

3.1 (10pt) Find the order of G.

3.2 (10pt) Show that the order of every element of G divides either (p2−1)
or 2p.

4. (20pt) Let S4 be the symmetric group of 4 letters.

4.1 (10pt) Classify all complex irreducible representations of S4;

4.2 (10pt) Find the character table of S4.

5. (20pt) Let F2 be the finite field of two elements.

5.1 (10pt ) Find all irreducible polynomials of degree 2 and 3 over F2;

5.2 (10pt) What is the number of irreducible polynomials of degree 6 over
F2?

6. (20pt) Let F be the splitting field of x4 − 2.

6.1 (10pt) Describe the field F and the Galois group G = Gal(F/Q).

6.2 (10pt) Describe all subfields K of F and corresponding Galois sub-
groups GK = Gal(F/K).

2



S.-T. Yau College Student Mathematics Contests 2013

Applied Math. and Computational Math.
Team

Please solve as many problems as you can!

1. Scaling behavior is one of the most important phenomena in sci-
entific modeling and mathematical analysis. The following problem
shows the universality and rigidity of scaling limits.

(a): (10 points) Suppose U > 0 is an increasing function on [0,∞)
and there is a function 0 < ψ(x) <∞ for x > 0 such that

lim
t→∞

U(tx)

U(t)
= ψ(x), for all x > 0

Then ψ(x) = xα for some α ≥ 0.
(b): (10 points) The above problem can be generalized as:

Suppose U > 0 is an increasing function on [0,∞) and there
is an extended function 0 ≤ ψ(x) ≤ ∞ and a set A dense in
[0,∞) such that

lim
t→∞

U(tx)

U(t)
= ψ(x), for all x ∈ A

Then ψ(x) = xα for some α ∈ [0,∞].
(c): (15 points) (Warming: this part is hard).

A function L : (0,∞) → (0,∞) is called slowly varying at ∞
if

lim
t→∞

L(tx)

L(t)
= 1, for all x ∈ A dense in (0,∞)

The function U in (a) and (b) can be recast as U(x) = c xαL(x)
for some c ≥ 0. Now we can extend (b) to an even more general
setting:
Suppose U > 0 is increasing on (0,∞), set A dense in [0,∞)

and

lim
n→∞

anU(bnx) = ψ(x) ≤ ∞, for all x ∈ A.

where bn → ∞ and an+1

an
→ 1 for some interval. Then there is a

real number α ∈ [0,∞], constant c ≥ 0, and a function L slowly
varying at ∞ such that ψ(x) = xα and U(x) = c xαL(x).

2. The following three operators are important for many mathematics
and physics problems. Let ϕ(x) be a smooth periodic function in Tn, ∆,
∇, ∇· be the standard Laplacian, gradient and divergence operators.

(i): Fokker-Planck operator: Fu = −∆u−∇ · (u∇ϕ)
1
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(ii): Witten Laplacian operator: Wu = −∆u+∇ϕ · ∇u
(iii): Schrödinger operator: Su = −∆u+

(
1
4
|∇ϕ|2 − 1

2
∆ϕ
)
u

Show that

(a): (5 points) The Fokker-Planck operator can be recast as Fu =
−∇ · (e−ϕ∇(eϕu).

(b): (10 points) These three operators have same eigenvalues.
(c): (5 points) Find all equilibrium solutions for these three op-

erators.

3. (15 points) Let f(x) defined on [0, 1] be a smooth function with
sufficiently many derivatives. xi = ih, where h = 1

N
and i = 0, 1, · · · , N

are uniformly distributed points in [0, 1]. What is the highest integer
k such that the numerical integration formula

IN =
1

N

(
a0(f(x0) + f(xN)) + a1(f(x1) + f(xN−1)) +

N−2∑
i=2

f(xi)

)
is k-th order accurate, namely∣∣∣∣IN −

∫ 1

0

f(x)dx

∣∣∣∣ ≤ Chk

for a constant C independent of h? Please describe the procedure to
obtain the two constants a0 and a1 for this k.

4. The wave guide problem is defined as

ut + ux = 0, vt − vx = 0

with the boundary condition

u(−1, t) = v(−1, t), v(1, t) = u(1, t)

and the initial condition

u(x, 0) = f(x), v(x, 0) = g(x).

The upwind scheme for the guide problem is defined as

un+1
j − unj
∆t

+
unj − unj−1

∆x
= 0, j = −N + 1, · · · , N ;

vn+1
j − vnj
∆t

−
vnj+1 − vnj

∆x
= 0, j = −N, · · · , N − 1;

with the boundary condition

un+1
−N = vn+1

−N , vn+1
N = un+1

N

where unj and vnj approximate u(xj, t
n) and v(xj, t

n) respectively at the

grid point (xj, t
n), with xj = j∆x, tn = n∆t, ∆x = 1

N
.
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(1) (5 points) For the solution to the wave guide problem with the
above boundary condition, prove the energy conservation

d

dt

∫ 1

−1

(u2 + v2)dx = 0.

(2) (5 points) For the numerical solution of the the upwind scheme,
if we define the discrete energy as

En =
N∑

j=−N+1

(unj )
2 +

N−1∑
j=−N

(vnj )
2,

prove the discrete energy stability

En+1 ≤ En

under a suitable time step restriction ∆t
∆x

≤ λ0. You should first
find λ0.

(3) (10 points) Under the same time step restriction, is the numer-
ical solution stable in the maximum norm? That is, can you
prove

max
−N≤j≤N

max(|un+1
j |, |vn+1

j |) ≤ max
−N≤j≤N

max(|unj |, |vnj |)?

5. (15 points) Let G = (V,E) be a graph of order n. Let X1, X2,
. . . , Xq with 2 ≤ q ≤ κ(X) be subsets of the vertex set V such that
X = X1 ∪X2 ∪ . . . ∪Xq. If for each i, i = 1, 2, . . . , q, and for any pair
of nonadjacent vertices x, y ∈ Xi, we have

d(x) + d(y) ≥ n,

then X is cyclable in G (i.e., there is a cycle containing all vertices of
X.).

Where d(x) is the degree of x and κ(X) is the smallest number of
vertices separating two vertices of X if X does not induce a complete
subgraph of G, otherwise we put κ(X) = |X| − 1 if |X| ≥ 2 and
κ(X) = 1 if |X| = 1.

6. (15 points) Let (Fn)n be the Fibonacci sequence. Namely, F0 =
0, F1 = 1, . . . , Fn+2 = Fn+1 + Fn.

Establish a relation between

(
0 1
1 1

)n

and Fn and use it to design

an efficient algorithm that for a given n computes the n-th Fibonacci
number Fn. In particular, it must be more efficient than computing
Fn in n consecutive steps.

Give an estimate on the number of steps of your algorithm.

Hint: Not that if m is even then(
0 1
1 1

)m

=

((
0 1
1 1

)m/2
)2
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and if m is odd then(
0 1
1 1

)m

=

(
0 1
1 1

)m−1

·
(
0 1
1 1

)
and m− 1 is even.
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Probability and Statistics Problems

Team

Please solve 5 out of the following 6 problems.

Problem 1. The characteristic function f of a probability distribution function F is

defined by

f(t) =

∫ ∞

−∞
eitx dF (x).

Show that f1(t) = (cos t)2 is a characteristic function and f2(t) = | cos t| is not a charac-

teristic function.

Problem 2. Let I = [0, 1] be the unit interval and B the σ-algebra of Borel sets on I.

Let P be the Lebesgue measure on I. Show that on the probability space (I,B, P ) the

set of points of x with the following property has probability 1: for all but finitely many

rational numbers p/q ∈ (0, 1), ∣∣∣∣x− p

q

∣∣∣∣ ≥ 1

(q log q)2
.

Problem 3. Let X be an integrable random variable, G a σ−algebra, and Y = E[X|G].
Assume that X and Y have the same distribution.

(1) Prove that if X is square-integrable, then X = Y , a.s. (i.e. X must be G measur-

able) ;

(2) Using a) to prove that for any pair of real numbers a, b with a < b, we have

min{max{X, a}, b} = min{max{Y, a}, b}, and consequently, X = Y , a.s.

Problem 4. Let X1, · · · , Xn be iid N(θ, σ2), σ2 known, and let θ have a double exponen-

tial distribution, that is, π(θ) = e−|θ|/a/(2a), a known. A Bayesian test of the hypothesis

H0 : θ ≤ 0 versus H1 : θ > 0 will decide in favor of H1 if its posterior probability is large.

1



(a) For a given constant K, calculate the posterior probability that θ > K, that is,

P (θ > K | x1, · · · , xn, a).

(b) Find an expression for lima→∞ P (θ > K | x1, · · · , xn, a).

(c) Compare your answer in part (b) to the p-value associated with the classical hypoth-

esis test.

Problem 5. Two sets of interesting ideas emerging in the 1990’s are the proposal of

model selection with L1-penalty (e.g., lasso) and the proposal of soft thresholding in

simultaneous inferences. Consider a linear model

Y = Xβ + ε,

where the set up is as usual (i.e., X is a non-random n by p matrix with 1 < p < n,

ε ∼ N(0, σ2 · In) with In being the identity matrix). The lasso procedure is to obtain an

estimate of the parameter vector β through minimizing

(L) :
1

2
||Y −Xβ||22 + λ · ||β||1,

which we denote by β∗
λ; here λ > 0 is a tuning parameter, || · ||2 denote the usual L2 vector

norm, and || · ||1 denotes the usual L1 vector norm.

Denote the ordinary least square estimate of β by β̂, we have

1

2
||Y −Xβ||22 + λ · ||β||1 =

1

2
||Y −Xβ̂||22 +

1

2
||X(β − β̂)||22 + λ · |β||1. (0.1)

Furthermore, if X has orthonormal columns, e.g.,

X ′X = Ip,

then it can be shown that

β∗
λ,i =


β̂i − γ, β̂i > γ,

0, |β̂i| ≤ γ,

β̂i + γ, βi < −γ.

(0.2)

(0.2) is called the soft thresholding of β̂i’s. This says that with orthonormal design, lasso

solution is equivalent to applying soft thresholding to the ordinary least square solution.

2



(a) Prove equation (0.1) without assuming X is orthogonal.

(b) Show that the lasso estimator is obtained by (0.2) under the assumption that X is

orthogonal, and find the relationship between λ and γ.

Problem 6. Consider a usual linear model Y = Xβ + ε, where ε ∼ N(0, σ2 · In) and

X has n rows and p columns where 1 < p < n. Consider a p-dimensional column vector

a ̸= 0.

(a) Show that, if Xa = 0, then a′β is not estimable.

(b) Prove or disprove that, if a′β is not estimable, then Xa = 0.

(c) Show that X is full rank if and only if a′β are estimable for all a.

3



S.-T. Yau College Student Mathematics Contests 2014

Analysis and Differential Equations
Individual

Please solve 5 out of the following 6 problems.

1. Let f : R → R be a continuous function which satisfies

sup
x,y∈R

|f(x+ y)− f(x)− f(y)| <∞.

If we have lim
n→∞,n∈N

f(n)

n
= 2014, prove sup

x∈R
|f(x)− 2014x| <∞.

2. Let f1, ..., fn are analytic functions on D = {z||z| < 1} and contin-
uous on D̄, prove that ϕ(z) = |f1(z)| + |f2(z)| + ... + |fn(z)| achieves
maximum values at the boundary ∂D.

3. Prove that if there is a conformal mapping between the annulus
{z|r1 < |z| < r2} and the annulus {z|ρ1 < |z| < ρ2}, then r2

r1
= ρ2

ρ1
.

4. Let U(ξ) be a bounded function on R with finitely many points of
discontinuity, prove that

PU(x) =
1

π

∫
R

y

(x− ξ)2 + y2
U(ξ)dξ

is a harmonic function on the upper half plane {z ∈ C|Imz > 0} and
it converges to U(ξ) as z → ξ at a point ξ where U(ξ) is continuous.

5. Let f ∈ L2(R) and let f̂ be its Fourier transform. Prove that∫ ∞

−∞
x2|f(x)|2dx

∫ ∞

−∞
ξ2|f̂(ξ)|2dξ ≥

(
∫∞
−∞ |f(x)|2dx)2

16π2
,

under the condition that the two integrals on the left are bounded.
(Hint: Operators f(x) → xf(x) and f̂(ξ) → ξf̂(ξ) after Fourier

transform are non-commuting operators. The inequality is a version of
the uncertainty principle.)

6. Let Ω be an open domain in the complex plane C. Let H be the
subspace of L2(Ω) consisting of holomorphic functions on Ω.

a) Show that H is a closed subspace of L2(Ω), and hence is a Hilbert
space with inner product

(f, g) =

∫
Ω

f(z)ḡ(z)dxdy, where z = x+ iy.

b) If {ϕn}∞n=0 is an orthonormal basis of H, then
1



2

Σ∞
n=0|ϕn(z)|2 ≤

c2

d(z,Ωc)
, for z ∈ Ω.

c) The sum

B(z, w) = Σ∞
n=0ϕn(z)ϕ̄n(w)

converges absolutely for (z, w) ∈ Ω × Ω, and is independent of the
choice of the orthonormal basis.



S.-T. Yau College Student Mathematics Contests 2014

Probability and Statistics Problems

Individual

Please solve the following 5 problems.

Problem 1. Let X be a real valued random variable such that for all smooth functions

f : R → R with compact support we have E[Xf(X)] = E[f ′(X)]. Show that X has the

standard normal distribution.

Problem 2. Let (Xn) be a sequence of uncorrelated random variables of mean zero such

that ∞∑
n=1

nE|Xn|2 < ∞.

Show that Sn =
∑n

i=1 Xi converges almost surely.

Problem 3. Let (Ω,F) be a measurable space and G be a sub-σ-field of F . Let P and

Q be two probabilities which are mutually absolutely continuous on F . We denote by X0

the Radon-Nikodym density of Q with respect to P on F . Show that the following two

properties are satisfied:

(a) 0 < EP [X0|G] < +∞, P -a.s.;

(b) for every F -measurable non-negative random variable f ,

EP [fX0|G] = EQ[f |G]EP [X0|G].

Problem 4. Suppose X1, . . . , Xn, . . . is a sequence of random numbers drawn from

the uniform distribution U(0, 1). One observes these numbers sequentially. At time n,

one keeps a record of Yn
def
= X(n) = maxn

i=1 Xi = max{Yn−1, Xn} and Zn
def
= X̄n =∑n

i=1 Xi/n = (n− 1)/nZn−1 + 1/nXn and discards all previous recordings.

(a) What is the best guess of X1 if one only observes Yn?

(b) What is the best guess of X1 if one only observes Zn?

(c) Comparing the two guesses of X1, which one is better (and in what sense)?

Give good reasoning to justify your answers.



Problem 5. Suppose we take a random sample of size n from a bag of colored balls

(red, blue and yellow balls) with replacement. Let X1 denote the number of red balls, X2

denote the number of blue balls, and X3 denote the number of yellow balls in the sample.

Assuming we know that the total number of yellow balls is triple the total number of red

balls in the bag. Or in other words, the red, blue and yellow balls occur with probability

p1, p2 and p3 = 3p1, respectively in the bag.

1. Find the aymptotic distribution (after appropriate normalization) for the MLE of

p2.

2. Construct the likelihood ratio test statistic for the null hypothesis that p1 = p2 =

p3/3 (the alternative is that p1 = p2 = p3/3 is not true). What is the asymptotic

distribution of your test statistic under null?



S.-T. Yau College Student Mathematics Contests 2014

Geometry and Topology
Individual

Please solve 5 out of the following 6 problems.

1. Let X be the quotient space of S2 under the identifications x ∼ −x
for x in the equator S1. Compute the homology groups Hn(X). Do the
same for S3 with antipodal points of the equator S2 ⊂ S3 identified.

2. Let M → R3 be a graph defined by z = f(u, v) where {u, v, z} is
a Descartes coordinate system in R3. Suppose that M is a minimal
surface. Prove that:
(a) The Gauss curvature K of M can be expressed as

K = ∆ log

(
1 +

1

W

)
, W :=

√
1 +

(
∂f

∂u

)2

+

(
∂f

∂v

)2

,

where ∆ denotes the Laplacian with respect to the induce metric on
M (i.e., the first fundamental form of M).
(b) If f is defined on the whole uv-plane, then f is a linear function
(Bernstein theorem).

3. Let M = R2/Z2 be the two dimensional torus, L the line 3x = 7y
in R2, and S = π(L) ⊂ M where π : R2 → M is the projection map.
Find a differential form on M which represents the Poincaré dual of S.

4. Let p : (M̃, g̃) → (M, g) be a Riemannian submersion. This is a
submersion p : M̃ → M such that for each x ∈ M̃ , Dp : ker⊥(Dp) →
Tp(x)(M) is a linear isometry.

(a) Show that p shortens distances.
(b) If (M̃, g̃) is complete, so is (M, g).
(c) Show by example that if (M, g) is complete, (M̃, g̃) may not be

complete.

5. Let Ψ : M → R3 be an isometric immersion of a compact surface
M into R3. Prove that

∫
M
H2dσ ≥ 4π, where H is the mean curvature

of M and dσ is the area element of M .

6. The unit tangent bundle of S2 is the subset

T 1(S2) = {(p, v) ∈ R3 | ∥p∥= 1, (p, v) = 0 and ∥v∥= 1}.
Show that it is a smooth submanifold of the tangent bundle T (S2) of
S2 and T 1(S2) is diffeomorphic to RP 3.

1



S.-T. Yau College Student Mathematics Contests 2014

Applied Math. and Computational Math.
Individual

Please solve as many problems as you can!

1. (20 pts) Ming Antu (1692-1763) is one of the greatest Chinese/Mongolian
mathematicians. In the 1730s, he first established and used what was
later to be known as Catalan numbers (Euler (1707-1763) rediscov-
ered them around 1756; Belgian mathematician Eugene Catalan (1814-
1894) “rediscovered” them again in 1838),

cn =
1

n+ 1

(
2n

n

)
, n = 0, 1, 2, · · ·

and Ming Antu derived the following half-angle formula in 1730:

sin2 θ

2
=

∞∑
n=1

cn−1

(
sin θ

2

)2n

Prove this formula.

Hint: you may use generating function

F (z) =
∞∑
n=0

cnz
n

and show that
∑

m+k=n cmck = cn+1 and then show zF (z)2 = F (z)−1.

2. Many algorithms, including polynomial factorisation in finite fields,
require to compute gcd(f(X), XN −1) for a polynomial f of reasonably
small degree n and a binomial XN − 1 of very large degree N . Since
N is very large the direct application of the Euclid algorithm is very
inefficient.

Questions:

(i) (10 pts) Suggest a more efficient approach the direct computa-
tion of gcd(f(X), XN − 1) via the Euclid algorithm.

(ii) (10 pts) Generalise it to gcd(f(X), A1X
N1 + . . . + AmX

Nm +
Am+1).

Hint: If for three polynomials f , g and h we have g ≡ h (mod f)
then

gcd(f, g) = gcd(f, h).
1
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3. For solving the following partial differential equation

ut + f(u)x = 0, 0 ≤ x ≤ 1 (1)

where f ′(u) ≥ 0, with periodic boundary condition, we can use the
following semi-discrete upwind scheme

d

dt
uj +

f(uj)− f(uj−1)

∆x
= 0, j = 1, 2, · · · , N, (2)

with periodic boundary condition

u0 = uN , (3)

where uj = uj(t) approximates u(xj, t) at the grid point x = xj = j∆x,
with ∆x = 1

N
.

(i) (15 pts) Prove the following L2 stability of the scheme

d

dt
E(t) ≤ 0 (4)

where E(t) =
∑N

j=1 |uj|2∆x.
(ii) (15 pts) Do you believe (4) is true for E(t) =

∑N
j=1 |uj|2p∆x for

arbitrary integer p ≥ 1? If yes, prove the result. If not, give a
counter example.

4. Let A be an n × n matrix with real and positive eigenvalues and b
be a given vector. Consider the solution of Ax = b by the following
Richardson’s iteration

x(k+1) = (I − ωA)x(k) + ωb

where ω is a damping coefficient. Let λ1 and λn be the smallest and
the largest eigenvalues of A. Let Gω = I − ωA.

(i) (4 points) Prove that the Richardson’s iteration converges if
and only if

0 < ω <
2

λn
.

(ii) (8 points) Prove that the optimal choice of ω is given by

ωopt =
2

λ1 + λn
.

Prove also that

ρ(Gω) =


1− ωλ1 ω ≤ ωopt

(λn − λ1)/(λn + λ1) ω = ωopt

ωλn − 1 ω ≥ ωopt

where ρ(Gω) is the spectral radius of Gω.
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(iii) (8 points) Prove that, if A is symmetric and positive definite,
then

ρ(Gωopt) =
κ2(A)− 1

κ2(A) + 1

where κ2(A) is the spectral condition number of A.

5. (10 pts) For solving the following heat equation on interval

ut = uxx, 0 ≤ x ≤ 1 (5)

with boundary condition

u(0) = u0, u(1) = u1, (6)

we first discretize the interval [0, 1] into N subintervals uniformly, that
is, the mesh size h = 1/N . We choose a temporal step size k and ap-
proximate the solution u(jh, nk) by Un

j , j = 1, ..., N − 1, n = 0, 1, 2, ....
Using the backward Euler method in time and central finite difference
in space, the discrete function Un

j satisfies:

Un+1
j − Un

j = λ(Un+1
j−1 − 2Un+1

j + Un+1
j+1 ), j = 1, ..., N − 1, (7)

where λ = k/h2, and

Un+1
0 = u0, U

n+1
N = u1.

Show that

1

2

N−1∑
j=1

(
(Un+1

j )2 − (Un
j )

2
)
≤ −λ

N−2∑
j=1

(Un+1
j+1 − Un+1

j )2

− λ

2
((Un+1

1 )2 + (Un+1
N−1)

2) +
λ

2
(u20 + u21) (8)



S.-T. Yau College Student Mathematics Contests 2014

Algebra and Number Theory
Individual

This exam of 6 problems is designed to test how much you know rather
than how much you don’t know. You are not expected to finish all

problems but do as much as you can.

Problem 1. Let G be a finite subgroup of GL(V ) where V is an n-dimensional complex
vector space.

(a) (5 points) Let

H = {h ∈ G : hv = η(h)v for some η(h) ∈ C× and all v ∈ V }.
Prove that H is a normal subgroup of G and that the map h 7→ η(h) is an isomor-
phism between H and its image in C×.

(b) (5 points) Let χV be the character function of G acting on V , i.e., χV (g) = tr(g)
with g viewed as an automorphism of V . Prove |χV (g)| ≤ n for all g ∈ G, and the
equality holds if and only if g ∈ H.

(c) (10 points) Let W be an irreducible representation of G. Then W is isomorphic to
a direct summand of V ⊗m for some m (as representations of G).

Problem 2. Let a1, . . . , an be nonnegative real numbers.

(a) (6 points) Prove that the n × n matrix A = (tai+aj) is positive semi-definite for
every real number t > 0. Find the rank of A.

(b) (7 points) Let B = (cij)n×n be an n× n-matrix with cij =
1

1+ai+aj
. Prove that A is

a positive semi-definite matrix.
(c) (7 points) Prove that B is positive definite if and only if ai are all distinct.

Problem 3. Consider the equations

X2 − 82Y 2 = ±2

(a) (5 points) Show that if (x, y) is a solution forX2−82Y 2 = ±2, then (9x−82y, x−9y)
is a solution for X2 − 82Y 2 = ∓2.

(b) (7 points) Show that the equations have solutions over Z/pnZ for any n and odd
prime p.

(c) (8 points) Show that the equations have no solutions over Z.
Problem 4. Let S and T be nonabelian finite simple groups, and write G = S × T .

(a) (7 points) Show that the total number of normal subgroups of G is four.
(b) (6 points) If S and T are isomorphic, show that G has a maximal proper subgroup

not containing either direct factor.
(c) (7 points) If G has a maximal proper subgroup that contains neither of the direct

factors of G, show that S and T are isomorphic.
1
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Problem 5. (20 points) Let F be a finite field and fi ∈ F[X1, X2, ..., Xn] be polynomials
of degree di, where 1 ≤ i ≤ r, such that fi(0, ..., 0) = 0 for all i. Show that if

n >

r∑
i=1

di,

then there exists nonzero solution to the system of equations: fi = 0, for all 1 ≤ i ≤
r. (Hint: you may first verify that the number of integral solutions is congruent to the
following number modulo p ∑

X∈Fn

r∏
i=1

(
1− fi(X)q−1

)
.

)

Problem 6.

(a) ( 5 points) Let A and B be two real n × n matrices such that AB = BA. Show
that det(A2 +B2) ≥ 0.

(b) (15 points) Generalize this to the case of k pairwise commuting matrices.



S.-T. Yau College Student Mathematics Contests 2014

Analysis and Differential Equations
Team

Please solve 5 out of the following 6 problems.

1. Calculate the integral: ∫ ∞

0

log x

1 + x2
dx.

2. Construct an increasing function on R whose set of discontinuities
is precisely Q.

3. Prove that any bounded analytic function F over {z|r < |z| < R}
can be written as F (z) = zαf(z), where f is an analytic function over
the disk {z||z| < R} and α is a constant.

4. Let D ⊂ Rn be a bounded open set, f : D̄ → D̄ is a smooth map

such that its Jacobian

∣∣∣∣∂f∂x
∣∣∣∣ ≡ 1, where D̄ denotes the closure of D.

Prove

(a) for each small ball Bϵ(x), there exists a positive integer k such
that fk(Bϵ(x)) ∩Bϵ(x) ̸= ∅, where Bϵ(x) denotes the ball cen-
tered at x with radius ϵ;

(b) there exists x ∈ D̄ and a sequence k1, k2, · · · kj, · · · such that
fkj(x) → x as kj → ∞.

5. Let u be a subharmonic function over a domain Ω ⊂ C, i.e., it is
twice differentiable and ∆u = ∂2u

∂x2 +
∂2u
∂y2

≥ 0. Prove that u achieves its

maximum in the interior of Ω only when u is a constant.

6. Suppose that ϕ ∈ C∞
0 (Rn),

∫
Rn ϕdx = 1. Let ϕϵ(x) = ϵ−nϕ(x/ϵ), x ∈

Rn, ϵ > 0. Prove that if f ∈ Lp(Rn), 1 ≤ p < ∞, then f ∗ ϕϵ → f in
Lp(Rn), as ϵ→ 0. It is not true for p = ∞.

1
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Probability and Statistics Problems

Team

Please solve the following 5 problems.

Problem 1. Suppose that Xn converges to X in distribution and Yn converges to a

constant c in distribution. Show that

(a) Yn converges to c in probability;

(b) XnYn converges to cX in distribution.

Problem 2. Let X and Y be two random variables with |Y | > 0, a.s.. Let Z = X/Y .

(a) Assume the distribution function of (X,Y ) has the density p(x, y). What is the

density function of Z?

(b) Assume X and Y are independent and X is N(0, 1) distributed, Y has the uniform

distribution on (0, 1). Give the density function of Z.

Problem 3. Let (Ω,F , P ) be a probability space.

(a) Let G be a sub σ-algebra of F , and Γ ∈ F . Prove that the following properties

are equivalent:

(i) Γ is independent of G under P ,

(ii) for every probability Q on (Ω,F), equivalent to P , with dQ/dP being G measur-

able, we have Q(Γ) = P (Γ).

(b) Let X,Y, Z be random variables and Y is integrable. Show that if (X,Y ) and Z

are independent, then E[Y |X,Z] = E[Y |X].

Problem 4. Let X1, ..., Xn be i.i.d. N(0, σ2), and let M be the mean of |X1|, ..., |Xn|.

1. Find c ∈ R so that σ̂ = cM is a consistent estimator of σ.

2. Determine the limiting distribution for
√
n(σ̂ − σ).

3. Identify an approximate (1− α)% confidence interval for σ.

4. Is σ̂ = cM asymptotically efficient? Please justify your answer.



Problem 5. The shifted exponential distribution has the density function

f(y;ϕ, θ) = 1/θ exp{−(u− ϕ)/θ}, y > ϕ, θ > 0.

Let Y1, . . . , Yn be a random sample from this distribution. Find the maximum likelihood

estimator (MLE) of ϕ and θ and the limiting distribution of the MLE.

You may use the following Rényi representation of the order statistics: Let E1, . . . , En, be

a random sample from the standard exponential distribution (i.e., the above distribution

with ϕ = 0, θ = 1). Let E(r) denote the r-th order statistics. According to the Rényi

representation,

E(r)
D
=

r∑
j=1

Ej

n+ 1− j
, r = 1, . . . , n.

Here, the symbol
D
= denotes equal in distribution.
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Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Compute the fundamental and homology groups of the wedge sum
of a circle S1 and a torus T = S1 × S1.

2. Given a properly discontinuous action F : G×M →M on a smooth
manifoldM , show thatM/G is orientable if and only ifM is orientable
and F (g, ·) preserves the orientation of M . Use this statement to show
that the Möbius band is not orientable and that RP n is orientable if
and only if n is odd.

3. (a) Consider the space Y obtained from S2 × [0, 1] by identifying
(x, 0) with (−x, 0) and also identifying (x, 1) with (−x, 1), for all x ∈
S2. Show that Y is homeomorphic to the connected sum RP 3#RP 3.

(b) Show that S2 × S1 is a double cover of the connected sum
RP 3#RP 3.

4. Prove that a bi-invariant metric on a Lie group G has nonnegative
sectional curvature.

5. Let M be the upper half-plane R2
+ with the metric

ds2 =
dx2 + dy2

yk
.

For which values of k is M complete?

6. Given any nonorientable manifoldM show the existence of a smooth
orientable manifold M which is a double covering of M . Find M when
M is RP 2 or the Möbius band.

1
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Algebra and Number Theory
Team

Solve 5 out of 6 problems, or the highest 5 scores will be counted.

Problem 1. Let the special linear group (of order 2)

SL2(R) = {g =

(
a b
c d

)
∈M2(R) : det g = 1}

act on the upper half plane H = {z = x+ iy ∈ C : y > 0} linear fractionally:(
a b
c d

)
z =

az + b

cz + d
.

(a) (5 points) Prove that the action is transitive, i.e., for any two z1, z2 ∈ H, there is
g ∈ SL2(R) such that gz1 = z2.

(b) (5 points) For a fixed z ∈ H, prove that its stabilizer Gz = {g ∈ SL2(R) : gz = z}
is isomorphic to SO2(R) = {g ∈M2(R) : ggt = 1}, where gt is the transpose of g.

(c)(10 points) Let Z be the set of integers and let

Γ(2) =

{(
a b
c d

)
∈ SL2(R) : a, b, c, d ∈ Z, a− 1 ≡ d− 1 ≡ b ≡ c ≡ 0 (mod 2)

}
be a discrete subgroup of SL2(R) (no need to prove this), and let it act on Q∪{∞} linearly
fractionally as above. How many orbits does this action have? Give a representative for
each orbit.

Problem 2. Let p ≥ 7 be an odd prime number.

(a) (5 points) (to warm up) Evaluate the rational number cos(π/7)·cos(2π/7)·cos(3π/7).

(b) (15 points) Show that
∏(p−1)/2

n=1 cos(nπ/p) is a rational number and determine its
value.

Problem 3. (20 points, 10 points each) For any 3× 3 matrix A ∈ M3(Q), let Adb be the
6× 6 matrix

Adb :=

(
0 I3
A 0

)
(a) Express the characteristic and minimal polynomials of Adb over Q in terms of the

characteristic and minimal polynomial of A.
(b) Suppose that A,B ∈ M3(Q) are such that Adb and Bdb are conjugate in the sense

that there exists an element C ∈ GL6(Q) such that C ·Adb ·C−1 = Bdb. Are A and
B conjugate? (Either prove this statement or give a counterexample.)

Problem 4. (20 points) Classify all groups of order 8.
1
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Problem 5. Let V be a finite dimensional vector space over complex field C with a non-
degenerate symmetric bilinear form ( , ). Let

O(V ) = {g ∈ GL(V )|(gu, gv) = (u, v), u, v ∈ V }
be the orthogonal group.

(a) (10 points) Prove that

(V ⊗C V )O(V ) ∼= EndO(V )(V ),

and construct one such isomorphism. Here O(V ) acts on V ⊗C V via g(a ⊗ b) =
ga⊗ gb, and (V ⊗C V )O(V ) is the fixed point subspace of V ⊗ V .

(b) (10 points) Prove that the fixed point subspace (V ⊗C V )O(V ) is 1-dimensional.

Problem 6. (20 points) Let c be a non-zero rational integer.

(a) (6 points) Factorize the three variable polynomial

f(x, y, z) = x3 + cy3 + c2z3 − 3cxyz

over C (you may assume c = θ3 for some θ ∈ C).
(b) (7 points) When c = θ3 is a cube for some rational integer θ, prove that there are

only finitely many integer solutions (x, y, z) ∈ Z3 to the equation f(x, y, z) = 1.
(c) (7 points) When c is not a cube of any rational integers, prove that there infinitely

many integer solutions (x, y, z) ∈ Z3 to the equation f(x, y, z) = 1.
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Applied Math. and Computational Math.
Team

Please solve as many problems as you can!

1. (15 pts)
Given a finite positive (Borel) measure dµ on [0, 1], define its sequence
of moments as follows

cj =

∫ 1

0

xj dµ(x) , j = 0, 1, . . . .

Show that the sequence is completely monotone in the sense that that

(I − S)kcj ≥ 0 for all j, k ≥ 0,

where S denotes the backshift operator given by Scj = cj+1 for j ≥ 0.

2. (20 pts)
We recall that a polynomial

f(X) = adX
d + ad−1X

d−1 + · · ·+ a1X + a0 ∈ Z[X]

is called an Eisenstein polynomial if for some prime p we have

(i) p | ai for i = 0, . . . , d− 1,
(ii) p2 - a0,
(iii) p - ad.
Eisenstein polynomials are well-know to be irreducible over Z, so they

can be used to construct explicit examples of irreducible polynomials.

Questions:

(i) Prove that a composition f(g(X)) of two Eisenstein polynomi-
als f and g is an Eisenstein polynomial again.

(ii) Suggest a multivariate generalisation of the Eisenstein polyno-
mials. That is, describe a class polynomials F (X1, . . . , Xm) in
terms of the divisibility properties of their coefficients that are
guaranteed to be irreducible.

3. (20 pts) For solving the following partial differential equation

ut + f(u)x = 0, 0 ≤ x ≤ 1 (1)

where f ′(u) ≥ 0, with periodic boundary condition, we can use the
following semi-discrete discontinuous Galerkin method: Find uh(·, t) ∈
Vh such that, for all v ∈ Vh and j = 1, 2, · · · , N ,∫
Ij

(uh)tvdx−
∫
Ij

f(uh)vxdx+f((uh)
−
j+1/2)v

−
j+1/2−f((uh)

−
j−1/2)v

+
j−1/2 = 0,

(2)
1



2

with periodic boundary condition

(uh)
−
1/2 = (uh)

−
N+1/2; (uh)

+
N+1/2 = (uh)

+
1/2, (3)

where Ij = (xj−1/2, xj+1/2), 0 = x1/2 < x3/2 < · · · < xN+1/2 = 1,
h = maxj(xj+1/2 − xj−1/2), v

±
j+1/2 = v(x±j+1/2, t), and

Vh = {v : v|Ij is a polynomial of degree at most k for 1 ≤ j ≤ N}.

Prove the following L2 stability of the scheme

d

dt
E(t) ≤ 0 (4)

where E(t) =
∫ 1

0
(uh(x, t))

2dx.

4. Consider the linear system Ax = b. The GMRES method is a pro-
jection method which obtains a solution in the m-th Krylov subspace
Km so that the residual is orthogonal to AKm. Let r0 be the initial
residual and let v0 = r0. The Arnoldi process is applied to build an
orthonormal system v1, v2, · · · , vm−1 with v1 = Av0/∥Av0∥. The ap-
proximate solution is obtained from the following space

Km = span{v0, v1, · · · , vm−1}.
(i) (5 points) Show that the approximate solution is obtained as

the solution of a least-square problem, and that this problem is
triangular.

(ii) (5 points) Prove that the residual rk is orthogonal to {v1, v2, · · · , vk−1}.
(iii) (5 points) Find a formula for the residual norm.
(iv) (5 points) Derive the complete algorithm.

5. (10 pts)

(i) Set x0 = 0. Write the recurrence

xk = 2xk−1 + bk, k = 1, 2, · · · , n,
in a matrix form Ax⃗ = b⃗. For b1 = −1/3, bk = (−1)k, k =
2, 3, · · · , n, verify that xk = (−1)k/3, k = 1, 2, · · · , n is the
exact solution.

(ii) Find A−1 and compute condition number of A in L1 norm.



S.-T. Yau College Student Mathematics Contests 2015

Analysis and Differential Equations
Individual

Please solve 5 out of the following 6 problems.

1. Let fn ∈ L2(R) be a sequence of measurable functions over the line, fn → f almost
everywhere. Let ||fn||L2 → ||f ||L2 , prove that ||fn − f ||L2 → 0.

2. Let f be a continuous function on [a, b], define Mn =
∫ b

a
f(x)xndx. Suppose that

Mn = 0 for all integers n ≥ 0, show that f(x) = 0 for all x.

3. Determine all entire functions f that satisfying the inequality

|f(z)| ≤ |z|2|Im(z)|2

for z sufficiently large.

4. Describe all functions that are holomorphic over the unit disk D = {z||z| < 1},
continuous on D̄ and map the boundary of the disk into the boundary of the disk.

5. Let T : H1 → H2, Q : H2 → H1 be bounded linear operators of Hilbert spaces
H1, H2. Let QT = Id − S1, TQ = Id − S2 where S1 and S2 are compact operators.
Prove KerT = {v ∈ H1, T v = 0}, CokerT = H2/Im(T ) are finite dimensional and
Im(T ) = {Tv ∈ H2, v ∈ H1} is closed in H2.

Note: S is compact means for every bounded sequence xn ∈ H1, Sxn has a converging
subsequence.

6. Let H1 be the Sobolev space on the unit interval [0, 1], i.e. the Hilbert space
consisting of functions f ∈ L2([0, 1]) such that

||f ||21 = Σ∞
n=−∞(1 + n2)|f̂(n)|2 <∞;

where

f̂(n) =
1

2π

∫ 1

0

f(x)e−2πinxdx

are Fourier coefficients of f . Show that there exists constant C > 0 such that

||f ||L∞ ≤ C||f ||1
for all f ∈ H1, where ||.||L∞ stands for the usual supremum norm. (Hint: Use Fourier

series.)

1



S.-T. Yau College Student Mathematics Contests 2015

Probability and Statistics

Individual (5 problems)

Problem 1. (a) Let X and Y be two random variables with zero means, variance 1,
and correlation ρ. Prove that

E[max{X2, Y 2}] ≤ 1 +
√
1− ρ2.

(b) Let X and Y have a bivariate normal distribution with zero means, variances
σ2 and τ 2, respectively, and correlation ρ. Find the conditional expectation E(X|Y ).

Problem 2. We flip a fair coin until heads turns out twice consecutively. What is the
expected number of flips?

Problem 3. Let (Xn, n ≥ 1) be a sequence of independent Gaussian variables, with
respective mean µn, and variance σ2

n.

(a) Prove that if
∑

nX
2
n converges in L1, then

∑
nX

2
n converges in Lp, for every

p ∈ [1,∞).

(b) Assume that µn = 0, for every n. Prove that if
∑

n σ
2
n = ∞, then

P(
∑
n

X2
n = ∞) = 1.

Problem 4. Let X1, . . . , Xn be a random sample of size n from the exponential
distribution with pdf f(x; θ) = θ−1 exp(−x/θ) for x, θ > 0, zero elsewhere. Let
Y1 = min{X1, . . . , Xn}. Consider an estimator nY1.

(a) Show this estimate is unbiased.

(b) Prove or disprove: This estimate is a consistent estimator.

(c) Prove or disprove: This estimate is an efficient estimator.

Problem 5. Let the independent normal random variables Y1, . . . , Yn have, respec-
tively, the probability density functions N(µ, γ2x2i ), i = 1, . . . , n, where the given
x1, . . . , xn are not all equal and no one of which is zero.

(a) Construct a confidence interval for γ with significance level 1− α.

(b) Discuss the test of the hypothesisH0 : γ = 1, µ unspecified, against all alternatives
H1 : γ ̸= 1, µ unspecified.



S.-T. Yau College Student Mathematics Contests 2015

Geometry and Topology
Individual

Please solve 5 out of the following 6 problems.

1. Let n, m be positive integers. Show that the product of spheres Sn×Sm has trivial
tangent bundle if and only if n or m is odd.

2. Show that there does not exist a compact three-dimensional manifold M whose
boundary is the real projective space RP2.

3. Let Mn be a smooth manifold without boundary and X a smooth vector field on
M . If X does not vanish at p ∈ M , show that there exists a local coordinate chart
(U ; x1, . . . , xn) centered at p such that in U the vector field X takes the form X = ∂

∂x1
.

4. Let M → R3 be a compact simply-connected closed surface. Prove that if M has
constant mean curvature, then M is a standard sphere.

5. Let M be an n-dimensional compact Riemannian manifold with diameter π/c and
Ricci curvature ≥ (n − 1)c2 > 0. Show that M is isometric to the standard n-sphere
in Rn+1 with radius 1/c.

6. Suppose (M, g) is a Riemannian manifold and p ∈ M . Show that the second-order
Taylor series of g in normal coordinates centered at p is

gij(x) = δij −
1

3

∑
k,l

Rikljxkxl +O(|x|3).

1



S.-T. Yau College Student Mathematics Contests 2015

Algebra and Number Theory

Individual (5 problems)

This exam of 160 points is designed to test how much you know rather than how
much you don’t know. You are not expected to finish all problems but do as much as

you can.

Problem 1. (20 pt) Let G be an finite Z-module ( i.e., a finite abelian group with
additive group law) with a bilinear, (strongly) alternative, and non-degenerate pairing

ℓ : G×G→ Q/Z.

Here “(strongly) alternating” means for every a ∈ G, ℓ(a, a) = 0; “non-degenerate”
means for every nonzero a ∈ G there is a b ∈ G such that ℓ(a, b) ̸= 0. Show in steps
the following statement:

(S) : G is isomorphic to H1 ⊕H2 for some finite abelian groups H1 ≃ H2 such that
ℓ|Hi×Hi

= 0.

(1.1) (5pt) For every a ∈ G, write o(a) for the order of a and ℓa : G−→Q/Z for the
homomorphism ℓa(b) = ℓ(a, b). Show that the image of ℓa is o(a)−1Z/Z.

(1.2) (5pt) Show that G has a pair of elements a, b with the following properties:

(a) o(a) is maximal in the sense that for any x ∈ G, o(x) | o(a);
(b) ℓ(a, b) = o(a)−1 mod Z.
(c) o(a) = o(b)

We call the subgroup < a, b >:= Za+ Zb a maximal hyperbolic subgroup of G.

(1.3) (5pt) Let < a, b > be a maximal hyperbolic subgroup of G. Let G′ be the orthog-
onal complement of < a, b > consisting of elements x ∈ G such that ℓ(x, c) = 0
for all c ∈< a, b >. Show that G is a direct sum as follows:

G = Za⊕ Zb⊕G′.

(1.4) (5pt) Finish the proof of (S) by induction.

Problem 2 (40pt). Let On(C) denote the group of n×n orthogonal complex matrices,
and Mn×k(C) the space of n × k complex matrices, where n and k are two positive
integers. For i = 0, 1, let Fi be the space of rational function f on Mn×k(C) such that

(∗) f(gx) = det(g)if(x) for all g ∈ On(C) and x ∈Mn×k(C).

We want to study in steps the structures of F0 and F1.

1



(2.1) (10pt) For each x ∈Mn×k, let Vx denote the subspace of Cn generated by columns
of x, and let Q(x) = xt · x ∈Mk×k(C). Show the following are equivalent:

(a) the space Vx has dimension k, and the Euclidean inner product (·, ·) is non-
degenerate on Vx in the sense that V ⊥

x ∩ Vx = 0.

(b) detQ(x) ̸= 0.

(2.2) (10pt) Show that F0 is a field generated by entries of Q(x).

(2.3) (10pt) Assuem k < n and let f ∈ F1. Show that f = 0 by the following two steps:

(a) for any x ∈ Mn×k(C) with detQ(x) ̸= 0, construct a g ∈ On(C) such that
g|Vx = 1 and det g = −1.

(b) Show that f vanishes on a general point x ∈ Mn×k(C) with detQ(x) ̸= 0,
thus f ≡ 0.

(2.4) (10pt) Assume k ≥ n. Show that F1 is a free vector space of rank 1 over F0.

Problem 3. (40pt) Consider the equation f(x) := x3 + x + 1 = 0. We want to show
in steps that

for any prime p, if
(

31
p

)
= −1, then x3 + x+ 1 is solvable mod p.

Let x1, x2, x3 be three roots of f(x) := x3 + x + 1 = 0. Let F = Q(x1), and L =
Q(x1, x2, x3), and K = Q(

√
∆) where ∆ is the discriminant of f(x):

∆ = [(x1 − x2)(x2 − x3)(x3 − x1)]
2.

(3.1) (10pt) Show that f is irreducible, that ∆ = −31, and that F is not Galois over
Q;

(3.2) (10pt) Show that Gal(L/Q) ≃ S3, the permutation group of three letters, that
Gal(L/K) ≃ Z/3Z, and that Gal(L/F ) ≃ Z/2Z;

(3.3) (20pt) Let OF , OK , OL = be rings of integers of F,K,L respectively. Let p be a
prime such that x3 + x+ 1 = 0 is not soluble in Z/pZ. Show the following:

(a) (5pt) pOF is still a prime ideal in OF ,

(b) (5pt) pOL is product of two prime ideals in OL, and

(c) (5pt) pOK is product of two primes ideals in OK , and

(d) (5pt) x2 + 31 = 0 is soluble in Fp.

2



Problem 4. (40pt) Let p be a prime and Zp the ring of p-adic integers with a p-adic
norm normalized by |p| = p−1. Let ϕ : Zp−→Zp be a map defined by a power series of
the form

ϕ(x) = xp + p
∑

anx
n, an ∈ Zp, |an|−→0.

Let E be a field, and F the E-vector space of locally constant E-valued functions on
Zp with an operator ϕ∗ defined by ϕ∗f = f ◦ϕ. We want to show in steps the following
statement:

The set of eigenvalues of ϕ∗ on F is {0, 1}.

(4.1) (10pt) Show that ϕ is a contraction map on each residue class R ∈ Zp/pZp:

|ϕ(x)− ϕ(y)| ≤ p−1|x− y|, ∀x, y ∈ R.

(4.2) (10pt) Show that there is a ϵR ∈ R for each residue class R such that

lim
n
ϕn(x) = ϵR, ∀x ∈ R.

Here ϕn is defined inductively by ϕ1 = ϕ, ϕn = ϕn−1 ◦ ϕ.

(4.3) (10pt) Let F0 (resp. F1) be the subspace of functions f vanishing on each ϵR
(resp. constant on R) for all residue class R. Show that ϕ∗ = 1 on F1, and that
for each f ∈ F0 ϕ

∗nf = 0 for some n ∈ N.

(4.4) (10pt) Show that for any a ∈ E, a ̸= 0, 1, the operator ϕ∗ − a is invertible on F .

Problem 5 (20pt). Check if the following rings are UFD (unique factorization domain).

(5.1) (5pt) R1 = Z[
√
6];

(5.2) (5pt) R2 = Z[(1 +
√
−11)/2];

(5.3) (5pt) R3 = C[x, y]/(x2 + y2 − 1);

(5.4) (5pt) R4 = C[x, y]/(x3 + y3 − 1).

3



S.-T. Yau College Student Mathematics Contests 2015

Applied Math. and Computational Math.
Individual (5 problems)

Problem 1. Let r and s be relatively prime positive integers. Prove that the number
of lattice paths from (0, 0) to (r, s), which consists of steps (1, 0) and (0, 1) and never
go above the line ry = sx is given by

1

r + s

(
r + s

s

)
.

Problem 2. The following 2× 2 block matrix

C(α) =

[
αI A
AT 0

]
plays a key role in an augmented system method to solve linear least squares problem, a
fundamental numerical linear algebra problem for fitting a linear model to observations
subject to errors in science, where A ∈ Rm×n is of full rank n ≤ m, I is am×m identity
matrix, and α ≥ 0. Prove the following results which address the question of optimal
choice of scaling α for stabiltiy of the augmented system method.

(a) The eigenvalues of C(α) are

α

2
±
(
α2

4
+ σ2

i

)1/2

for i = 1, 2, . . . , n, and α (m− n times),

where σi for i = 1, 2, . . . , n are the singular values of A, arranged in the de-
creasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn.

(b) The condition number κ2(C(α)) = ∥C(α)∥2 ∥[C(α)]−1∥2 has the following bounds:
√
2κ2(A) ≤ min

α
κ2(C(α)) ≤ 2κ2(A),

with minα κ2(C(α)) being achieved for α = σn/
√
2, and

max
α

κ2(C(α)) > κ2(A)
2,

where ∥ · ∥ is the spectral norm of a matrix.

Recall that any matrix A ∈ Rm×n has a singular value decomposition (SVD):

A = UΣV T , Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, p = min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, and U ∈ Rm×m, V ∈ Rn×n are both orthogonal. The σi
are the singular values of A and the columns of U and V are the left and right singular
vectors of A, respectively.

1
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Problem 3. Solve the following linear hyperbolic partial differential equation

ut + aux = 0, t ≥ 0,(1)

where a is a constant. Using the finite difference approximation, we can obtain the
forward-time central-space scheme as follows,

un+1
m − unm

k
+ a

unm+1 − unm−1

2h
= 0,(2)

where k and h are temporal and spatial mesh sizes.

(a) Show that when we fix λ = k/h as a positive constant, the forward-time central-
space scheme (2) is consistent with equation (1).

(b) Analyze the stability of this method. Is the method stable with λ = k/h being
fixed as a constant?

(c) How would the answer change if you are allowed to make λ = k/h small?
(d) Would this is a good scheme to use even if you can make it stable by making λ

small? If not, please provide a simple modification to make this scheme stable
by keeping λ fixed.

Problem 4. Let A,H,Q ∈ Cn×n and Q is non-singular. Assume that H = Q−1AQ
and H is properly upper Hessenberg. Show that

span{q1, q2, . . . , qj} = Kj(A, q1), j = 1, 2, . . . , n

where qj is the j-th column of Q, and Kj(A, q1) = span{q1, Aq1, . . . , Aj−1q1}.

Problem 5. Minkowski Problem.

ni

FiAi

Assume P is a convex polyhedron embedded in R3, the faces are {F1, F2, · · · , Fk},
the unit normal vector to the face Fi is ni, the area of Fi is Ai, 1 ≤ i ≤ k.

• Show that

(3) A1n1 + A2n2 + · · ·Aknk = 0,

• Given k unit vectors {n1,n2, · · · ,nk} which can not be contained in any half
space, and k real positive numbers {A1, A2, · · · , Ak}, Ai > 0, and satisfying
the condition (3), show that there exists a convex polyhedron P , whose face
normals are ni’s, face areas are Ai’s.



S.-T. Yau College Student Mathematics Contests 2015

Analysis and Differential Equations
Team

Please solve 5 out of the following 6 problems.

1. Let ϕ ∈ C([a, b], R). Suppose for every function h ∈ C1([a, b], R), h(a) = h(b) = 0,
we have ∫ b

a

ϕ(x)h(x)dx = 0.

Prove that ϕ(x) = 0.

2. Let f be a Lebesgue integrable function over [a, b+ δ], δ > 0, prove that

lim
h→0+

∫ b

a

|f(x+ h)− f(x)|dx→ 0.

3. Let L(q, q
′
, t) be a function of (q, q

′
, t) ∈ TU × R,U is an open domain in Rn. Let

γ : [a, b] → U be a curve in U . Define a functional S(γ) =
∫ b

a
L(γ(t), γ

′
(t), t)dt. We say

that γ is an extremal if for every smooth variation of γ, ϕ(t, s), s ∈ (−δ, δ), ϕ(t, 0) =

γ(t), ϕs = ϕ(t, s), we have dS(ϕs)
ds

|s=0 = 0. Prove that every extremal γ satisfies the

Euler-Lagrange equation: d
dt
( ∂L
∂q′

) = ∂L
∂q
.

4. Let f : U → U be a holomorphic function with U a bounded domain in the complex
plane. Assuming 0 ∈ U, f(0) = 0, f

′
(0) = 1, prove that f(z) = z.

5. Let T : H1 → H2 be a bounded operator of Hilbert spaces H1, H2. Let S : H1 → H2

be a compact operator, that is, for every bounded sequence {vn} ∈ H1, Svn has a con-

verging subsequence. Show that Coker(T + S) = H2/Im(T + S) is finite dimensional
and Im(T + S) is closed in H2. (Hint: Consider equivalent statements in terms of
adjoint operators.)

6. Let u ∈ C2(Ω̄),Ω ⊂ Rd is a bounded domain with a smooth boundary.
1) Let u be a solution of the equation ∆u = f, u|∂Ω = 0, f ∈ L2(Ω). Prove that there

is a constant C depends only Ω such that∫
Ω

(Σn
j=1(

∂u

∂xj
)2 + u2)dx ≤ C

∫
Ω

f 2(x)dx.

2) Let {un} be a sequence of harmonic functions on Ω, such that ||un||L2(Ω) ≤ M <
∞, for a constant M independent of n. Prove that there is a converging subsequence
{unk

} in L2(Ω).

1



S.-T. Yau College Student Mathematics Contests 2015

Probability and Statistics

Team (5 problems)

Problem 1. One hundred passengers board a plane with exactly 100 seats. The first
passenger takes a seat at random. The second passenger takes his own seat if it is
available, otherwise he takes at random a seat among the available ones. The third
passenger takes his own seat if it is available, otherwise he takes at random a seat
among the available ones. This process continues until all the 100 passengers have
boarded the plane. What is the probability that the last passenger takes his own seat?

Problem 2. Assume a sequence of random variables Xn converges in distribution to a
random variableX. Let {Nt, t ≥ 0} be a set of positive integer-valued random variables,
which is independent of (Xn) and converges in probability to ∞ as t→ ∞. Prove that
XNt converges in distribution to X as t→ ∞.

Problem 3. Suppose T1, T2, . . . , Tn is a sequence of independent, identically distributed
random variables with the exponential distribution of the density function

p(x) =

{
e−x, x ≥ 0;

0, x < 0.

Let Sn = T1 + T2 + · · ·+ Tn. Find the distribution of the random vector

Vn =
{T1
Sn

,
T2
Sn

, · · · , Tn
Sn

}
.

Problem 4. Suppose that X and Z are jointly normal with mean zero and standard
deviation 1. For a strictly monotonic function f(·), cov(X,Z) = 0 if and only if
cov(X, f(Z)) = 0, provided the latter covariance exists. Hint: Z can be expressed
as Z = ρX + ε where X and ε are independent and ε ∼ N(0,

√
1− ρ2).

Problem 5. Consider the following penalized least-squares problem (Lasso):

1

2
∥Y −Xβ∥2 + λ∥β∥1

Let β̂ be a minimizer and ∆ = β̂ − β∗ for any given β∗. If λ > 2∥XT (Y − Xβ∗)∥∞,
show that

1. ∥Y −XT β̂∥2 − ∥Y −XTβ∗∥2 > −λ∥∆∥1.



2. ∥∆Sc∥1 ≤ 3∥∆S∥1, where S = {j : β∗
j ̸= 0} is the support of the vector β∗, Sc is

its complement set, ∆S is the subvector of ∆ restricted on the set S, and ∥∆S∥1
is its L1-norm.



S.-T. Yau College Student Mathematics Contests 2015

Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Let SO(3) be the set of all 3× 3 real matrices A with determinant 1 and satisfying
tAA = I, where I is the identity matrix and tA is the transpose of A. Show that SO(3)
is a smooth manifold, and find its fundamental group. You need to prove your claims.

2. Let X be a topological space. The suspension S(X) of X is the space obtained from
X× [0, 1] by contracting X×{0} to a point and contracting X×{1} to another point.
Describe the relation between the homology groups of X and S(X).

3. Let F : M → N be a smooth map between two manifolds. Let X1, X2 be smooth
vector fields onM and let Y1, Y2 be smooth vector fields on N . Prove that if Y1 = F∗X1

and Y2 = F∗X2, then F∗[X1, X2] = [Y1, Y2], where [ , ] is the Lie bracket.

4. Let M1 and M2 be two compact convex closed surfaces in R3, and f : M1 → M2 a
diffeomerphism such that M1 and M2 have the same inner normal vectors and Gauss
curvatures at the corresponding points. Prove that f is a translation.

5. Prove the second Bianchi identity:

Rijkl,h +Rijlh,k +Rijhk,l = 0

6. Let M1,M2 be two complete n-dimensional Riemannian manifolds and γi : [0, a] →
Mi are two arc length parametrized geodesics. Let ρi be the distance function to γi(0)
on Mi. Assume that γi(a) is within the cut locus of γi(0) and for any 0 ≤ t ≤ a we
have the inequality of sectional curvatures

K1(X1,
∂

∂γ1
) ≥ K2(X2,

∂

∂γ2
),

where Xi ∈ Tγi(t)Mi is any unit vector orthogonal to the tangent ∂
∂γi

.

Then
Hess(ρ1)(X̃1, X̃1) ≤ Hess(ρ2)(X̃2, X̃2),

where X̃i ∈ Tγi(a)Mi is any unit vector orthogonal to the tangent ∂
∂γi

(a).

1



S.-T. Yau College Student Mathematics Contests 2015

Algebra and Number Theory

Team

This exam contains 6 problems. Please choose 5 of them to work on.

Problem 1. (20pt) Let V = Rn be an Euclidean space equipped with usual inner
product, and g an orthogonal matrix acting on V . For a ∈ V , let sa denote the
reflection

sa(x) := x− 2
(x, a)

(a, a)
a, ∀x ∈ V.

(1.1) (10pt) For a = (g − 1)b 6= 0, show that

ker(sag − 1) = ker(g − 1)⊕ Rb.

(1.2) (10pt) Show that g is a product of dim[(g − 1)V ] reflections.

Problem 2. (20pt) Let p and q be two distinct prime numbers. Let G be a non-abelian
finite group satisfying the following conditions:

1. all nontrivial elements have order either p or q;

2. The q-Sylow subgroup Hq is normal and is a nontrivial abelian group.

Show in steps the following statement:

The group G is of the form (Z/pZ) n (Z/qZ)n, where the action of 1 ∈ Z/pZ on
(Z/qZ)n ' Fnq is given by a matrix M(1) ∈ GLn(Fq) whose eigenvalues are all
primitive p-th roots of unities.

(2.1) (5pt) Let Hp denote a p-Sylow subgroup of G. Show that its inclusion into G
induces an isomorphism Hp

∼= G/Hq, and that G ' Hp nHq.

(2.2) (5pt) Let M : Hp−→Aut(Hq) ' GLn(Fq) be the homomorphism induced from
the conjugations. Show that for each 1 6= a ∈ Hp, M(a) is semisimple whose
eigenvalues are all primitive p-th roots of unities. In particular M is injective.

(2.3) (5pt) Show that if two nontrivial elements a, b ∈ Hp commute with each other,
then a = bn for some n ∈ N, and that Hp ' Z/pZ.

(2.4) (5pt) Complete the solution of the problem.

1



Problem 3. (20pt) Let ζ be a root of unity satisfying an equation ζ = 1 + Nη for an
integer N ≥ 3 and an algebraic integer η. Show that ζ = 1.

Problem 4. (20pt) Let G be a finite group and (π, V ) a finite dimensional CG-module.
For n ≥ 0, let C[V ]n be the space of homogeneous polynomial functions on V of degree
n. For a simple G-representation ρ, denote by an(ρ) the multiplicity of ρ in C[V ]n.
Show that ∑

n≥0

an(ρ)tn =
1

|G|
∑
g∈G

χρ(g)

det(idV − π(g)t)
.

Problem 5. (20pt) Let A be an n × n complex matrix considered as an operator on
V = (Cn, (·, ·)) with standard hermitian form. Let A∗ = Āt be the hermitian transpose
of A:

(Ax, y) = (x,A∗y), ∀x, y ∈ Cn.

(5.1) (5pt) For any λ ∈ C, show the identity:

ker(A− λ)⊥ = (A∗ − λ̄)V.

(5.2) (15pt) Show the equivalence of the following two statements:

(a) A commutes with A∗;

(b) there is a unitary matrix U (in the sense U∗ = U−1), such that UAU−1 is
diagonal.

Problem 6. (20pt) Consider the polynomial f(x) = x5 − 80x+ 5.

(6.1) (5pt) Show that f is irreducible over Q;

(6.2) (15 pt) Show in steps that the split field K of f has Galois group G := Gal(K/Q)
isomorphic to S5, the symmetric group of 5 letters.

(a) (5pt) f = 0 has exactly two complex roots;

(b) (5pt) G can be embedded into S5 with image containing cycles (12345) and
(12);

(c) (5pt) G ' S5.

2
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Applied Math. and Computational Math.
Team (5 problems)

Problem 1. Consider the elliptic interface problem

(a(x)ux)x = f, x ∈ (0, 1)

with the Dirichlet boundary condition

u(0) = u(1) = 0.

Here, f is a smooth function, the elliptic coefficient a(x) is discontinuous across an
interface point ξ, that is,

a(x) =

{
a0 for 0 < x < ξ
a1 for ξ < x < 1,

a0, a1 > 0 are positive constants, and 0 < ξ < 1 is an interface point. Across the
interface, we need to impose two jump conditions

u(ξ−) = u(ξ+), a(ξ−)ux(ξ−) = a(ξ+)ux(ξ+).

Question:

1. (25%) Design a numerical method to solve this problem. The method should
be at least first order. It is better to be high order (if your method is first order,
you get 20% points).

2. (75%) Prove your accuracy and convergence arguments (if your method is first
order, you get 60% points).

Problem 2. Let G be graph of a social network, where for each pair of members there
is either no connection, or a positive or a negative one.

An unbalanced cycle in G is a a cycle which have odd number of negative edges.
Traversing along such a cycle with social rules such as friend of enemy are enemy would
result in having a negative relation of one with himself!

A resigning in G at a vertex v of G is to switch the type (positive or negative) of all
edges incident to v.

Question: Show that one can switch all edge of G into positive edges using a sequence
resigning if and only if there is no unbalanced cycle in G.

Problem 3. We consider particles which are able to produce new particles of like kind.
A single particle forms the original, or zero, generation. Every particle has probability
pk (k = 0, 1, 2, . . . ) of creating exactly k new particles; the direct descendants of the
nth generation form the (n + 1)st generation. The particles of each generation act
independently of each other.

1
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Assume 0 < p0 < 1. Let P (x) =
∑

k≥0 pkx
k and µ = P ′(1) =

∑
k≥0 kpk be the

expected number of direct descendants of one particle. Prove that if µ > 1, then the
probability xn that the process terminates at or before the nth generation tends to the
unique root σ ∈ (0, 1) of equation σ = P (σ).

Problem 4. (Isopermetric inequality). Consider a closed plane curve described by a
parametric equation (x(t), y(t)), 0 ≤ t ≤ T with parameter t oriented counterclockwise
and (x(0), y(0)) = (x(T ), y(T )).

(a): Show that the total length of the curve is given by

L =

∫ T

0

√
(x′(t))2 + (y′(t))2) dt

(b): Show that the total area enclosed by the curve is given by

A =
1

2

∫ T

0

(
x(t)y′(t)− y(t)x′(t)

)
dt

(c): The classical iso-perimetric inequality states that for closed plane curves
with a fixed length L, circles have the largest enclosed area A. Formulate this
question into a variational problem.

(d): Derive the Euler-Lagrange equation for the variational problem in (c).
(e): Show that there are two constants x0 and y0 such that

(x(t)− x0)
2 + (y(t)− y0)

2 ≡ r2

where r = L/(2π). Explain your result.

Problem 5. Let A ∈ Rn×m with rank r < min(m,n). Let A = UΣV T be the SVD of
A, with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

(a) Show that, for every ϵ > 0, there is a full rank matrix Aϵ ∈ Rn×m such that
||A− Aϵ||2 = ϵ.

(b) Let Ak = UΣkV
T where Σk = diag(σ1, . . . , σk, 0, . . . , 0) and 1 ≤ k ≤ r − 1.

Show that rank(Ak) = k and

σk+1 = ||A− Ak||2 = min {||A−B||2 | rank(B) ≤ k}
(c) Assume that r = min(m,n). Let B ∈ Rn×m and assume that ||A − B||2 < σr.

Show that rank(B) = r.



S.-T. Yau College Student Mathematics Contests 2016

Analysis and Differential Equations
Individual

Please solve 5 out of the following 6 problems.

1. Suppose that F is continuous on [a, b], F
′
(x) exists for every x ∈ (a, b), F

′
(x) is

integrable. Prove that F is absolutely continuous and

F (b)− F (a) =

∫ b

a

F
′
(x)dx.

2. Suppose that f is integrable on Rn, let Kδ(x) = δ−
n
2 e

−π|x|2
δ for each δ > 0. Prove

that the convolution

(f ∗Kδ)(x) =

∫
Rn

f(x− y)Kδ(y)dy

is integrable and ||(f ∗Kδ)− f ||L1(Rn) → 0, as δ → 0.

3. Prove that a bounded function on interval I = [a, b] is Riemann integrable if and
only if its set of discontinuities has measure zero. You may prove this by the following
steps.

Define I(c, r) = (c − r, c + r), osc(f, c, r) = supx,y∈J∩I(c,r) |f(x) − f(y)|, osc(f, c) =
limr→0 osc(f, r, c).

1) f is continuous at c ∈ J if and only if osc(f, c) = 0.
2) For arbitrary ϵ > 0, {c ∈ J |osc(f, c) ≥ ϵ} is compact.
3) If the set of discontinuities of f has measure 0, then f is Riemann integrable.

4. 1) Let f be the Rukowski map: w = 1
2
(z + 1

z
). Show that it maps {z ∈ C̄||z| > 1}

to C̄/[−1, 1], C̄ = C ∪ {∞}.
2) Compute the integral: ∫ ∞

0

log x

x2 − 1
dx.

5. Let f be a doubly periodic meromorphic function over the complex plane, i.e. f(z+
1) = f(z), f(z + i) = f(z), z ∈ C, prove that the number of zeros and the number of
poles are equal.

6. Let A be a bounded self-adjoint operator over a complex Hilbert space. Prove that
the spectrum of A is a bounded closed subset of the real line R.

1
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Probability and Statistics

Individual (5 problems)

Problem 1. A random walker moves on the lattice Z2 according to the following rule:
in the first step it moves to one of its neighbors with probability 1/4, and then in step
n > 1 it moves to one of the neighbors that it didn’t visit in the step n− 1 with equal
probability. Let T be the time when the random walker steps on a site that it already
visited. Please show that the expectation of T is less than 35.

Problem 2. Let X be a N ×N random matrix with i.i.d. random entries, and

P(X11 = 1) = P(X11 = −1) = 1/2

Define
‖X‖op = sup

v∈CN :‖v‖2=1

‖Xv‖2

Please show that for any fixed δ > 0,

lim
N→∞

P(‖X‖op ≥ N1/2+δ) = 0

Hint: ‖X‖2
op ≤ tr|X|2

Problem 3. Suppose that 2016 balls are put into 2016 boxes with each ball indepen-
dently being put into box i with probability 1

3×1008
for i ≤ 1008 and 2

3×1008
for i > 1008.

Let T be the number of boxes containing exactly 2 balls. Please find the variance of T .

Problem 4. Let b > a > 0 be real numbers. Let X be a random variable taking values
in [a, b], and let Y = 1

X
. Determine the set of all possible values of E(X)× E(Y ).

Problem 5. Let X1, X2, . . . be independent and identically distributed real-valued
random variables such that E(X1) = −1. Let Sn = X1 + · · ·+ Xn for all n ≥ 1, and let
T be the total number of n ≥ 1 satisfying Sn ≥ 0. Compute P (T = ∞).
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Geometry and Topology
Individual

Please solve 5 out of the following 6 problems.

1. Let M be a compact odd-dimensional manifold with boundary ∂M . Show that the
Euler characteristics of M and ∂M are related by:

χ(M) =
1

2
χ(∂M).

2. Compute the de Rham cohomology of a punctured two-dimensional torus T 2−{p},
where p ∈ T 2. If T 2 = R2/Z2 with coordinates (x, y) ∈ R2, then is the volume form
ω = dx ∧ dy exact?

3. Let Mn → Rn+1 be a closed oriented hypersurface. The r-th mean curvature of Mn

is defined by

Hr :=
1(
n
r

)
∑

i1<i2···<ir

λi1λi2 · · ·λir , (1 ≤ r ≤ n)

where λi (i = 1, · · · , n) are principal curvatures of Mn. Prove that if all of λi are
positive and Hr =constant for a certain r, then Mn is a hypersphere in Rn+1.

4. State and prove the cut-off function lemma on a differentiable manifold.

5. Let M be a compact Riemannian manifold without boundary. Show that if M has
positive Ricci curvature, then H1(M,R) = 0.

6. Let M be an orientable, closed and embedded minimal hypersurface in Sn+1. Denote
by λ1 the first eigenvalue for the Laplace-Beltrami operator on M . Prove that λ1 ≥ n/2.

1
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Algebra and Number Theory
Individual

This test has 5 problems and is worth 100 points. Carefully justify your answers.

Problem 1 (20 points). Let E be a linear space over R, of finite dimension n ≥ 2,
equipped with a positive definite symmetric bilinear form 〈 · , · 〉. Let u1, u2, . . . , un

be a basis of E. Let v1, v2, . . . , vn be the dual basis, that is,

〈ui, vj〉 =

1 if i = j,
0 if i 6= j,

for all i, j = 1, 2, . . . , n.
(a) (8 points) Assume that 〈ui, uj〉 ≤ 0 for all 1 ≤ i < j ≤ n. Show that there

is an orthogonal basis u′1, u′2, . . . , u′n of E such that u′i is a non-negative linear
combination of u1, u2, . . . , ui, for all i = 1, 2, . . . , n.

(b) (6 points) With the same assumption as in Part (a), show that 〈vi, vj〉 ≥ 0 for
all 1 ≤ i < j ≤ n.

(c) (6 points) Assume that n ≥ 3. Show that the condition 〈ui, uj〉 ≥ 0 for all
1 ≤ i < j ≤ n does not imply that 〈vi, vj〉 ≤ 0 for all 1 ≤ i < j ≤ n.

Problem 2 (20 points). Let d ≥ 1 and n ≥ 1 be integers.
(a) (5 points) Show that there are only finitely many subgroups G ⊆ Zd of index n.

Let fd(n) denote the number of such subgroups.
(b) (5 points) Let gd(n) denote the number of subgroups H ⊆ Zd of index n

such that the quotient group is cyclic. Show that fd(mn) = fd(m)fd(n) and
gd(mn) = gd(m)gd(n) for coprime positive integers m and n.

(c) (5 points) Compute gd(pr) for every prime power pr, r ≥ 1.
(d) (5 points) Compute f2(20).

Problem 3 (20 points). Let A be a complex m × m matrix. Assume that there
exists an integer N ≥ 0 such that tn = tr(An) is an algebraic integer for all n ≥ N .
The goal of this problem is to show that the eigenvalues a1, . . . , am of A are algebraic
integers.
(a) (10 points) Show that there exist algebraic numbers bij ∈ C, 1 ≤ i, j ≤ m such

that
an

i =
m∑

j=1
bijtn+j−1

for all n ≥ 0 and all 1 ≤ i ≤ m. In particular, a1, . . . , am are algebraic
numbers.

(b) (8 points) Let R be the ring of all algebraic integers in C and let K be the
field of all algebraic numbers in C. Show that for a ∈ K, if R[a] is contained
in a finitely-generated R-submodule of K, then a ∈ R.

(c) (2 points) Conclude that a1, . . . , am are algebraic integers.
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Problem 4 (20 points). Let E be a Euclidean plane. For each line l in E, write
sl ∈ Iso(E) for the reflection with respect to l, where Iso(E) denotes the group of
distance-preserving bijections from E to itself.
(a) (6 points) Let l1 and l2 be two distinct lines in E. Find the necessary and

sufficient condition that sl1 and sl2 generate a finite group.
(b) (7 points) Let l1, l2 and l3 be three pairwise distinct lines in E. Assume that

sl1 , sl2 and sl3 generate a finite group. Show that l1, l2, l3 intersect at a point.
(c) (7 points) Let G be a finite subgroup of Iso(E) generated by reflections. Show

that G is generated by at most two reflections.

Problem 5 (20 points). Let G be a finite group of order 2nm where n ≥ 1 and
m is an odd integer. Assume that G has an element of order 2n. The goal of this
problem is to show that G has a normal subgroup of order m.
(a) (5 points) Show that if M is a normal subgroup of G of order m, then M is

the only subgroup of G of order m.
(b) (5 points) Let N be a normal subgroup of G and let P be a 2-Sylow subgroup

of G. Show that P ∩N is a 2-Sylow subgroup of N .
(c) (5 points) Show that the homomorphism G → {±1} carrying g to sgn(lg) is

surjective. Here sgn(lg) denotes the sign of the permutation lg : G→ G given
by left multiplication by g.

(d) (5 points) Deduce by induction on n that G has a normal subgroup of order m.
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Applied Math. and Computational Math.
Individual (5 problems)

Problem 1. Consider the implicit leapfrog scheme

un+1
m − un−1

m

2k
+ a

(
1 +

h2

6
δ2

)−1

δ0u
n
m = fn

m

for the one-way wave equation

ut + aux = f.

Here δ2 is the central second difference operator, and δ0 is the central first difference
operator.

(1) show that the scheme is of order (2, 4).
(2) show that the scheme is stable if and only if |ak

h
| < 1√

3
.

Problem 2. A simple version of an enzyme-mediate chemical reaction process is given
by

S + E
k1←→
k2

C
k3−→ P + E

where S is the substrate reactant and P is the concentration of the desired product.
An enzyme (or catalyst) E is a compound whose special property is that it allows for
intermediate reaction steps that lead to a the overall reaction,

S −→ P.

Assume the initial conditions

S(0) = S0, E(0) = E0, C(0) = 0, P (0) = 0;

k1, k2, k3 are reaction rate constants.

(a) Convert the chemical reaction equation into a system of rate equations (ODEs) for
S(T ), E(T ), C(T ), and P (T ) where T is the dimensional time. Nondimensionalize
the equations using the scalings

T = t/(k1E0), S(T ) = S0s(t), P (T ) = S0p(t), E(T ) = E0s(t), C(T ) = E0c(t),

ε =
E0

S0

¿ 1, λ =
k2

k1S0

, µ =
k2 + k3

k1S0

.

(b) Use the expansions s(t) = s0(t)+ εs1(t)+O(ε2), c(t) = c0(t)+ εc1(t)+O(ε2), etc to
determine the equations for the leading order slow solution. Show that s0(t) and
p0(t) satisfies the following Michaelis-Menten equations

ṡ0(t) = −(µ− λ)
s0

µ + s0

, ṗ0(t) = (µ− λ)
s0

µ + s0

.

1
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Problem 3. We say that a vector u = (u1, . . . , un) ∈ Nn is multiplicatively dependent
if there is a non-zero vector k = (k1, . . . , kn) ∈ Zn for which

(1) uk1
1 · · ·ukn

n = 1.

This notion plays a very important role in many number theoretic algorithms, such
as factorisation and primality testing . It also (in a more general form) appears in
some questions in algebraic dynamics . However the algorithm to decide whether u
is multiplicatively dependent is not immediately obvious. The following statement
informally means that if u is multiplicatively dependent the exponents k1, . . . , kn can
be chosen to be reasonably small. Prove that if u = (u1, . . . , un) ∈ Nn is multiplicatively
dependent with ‖u‖∞ ≤ H where ‖u‖∞ = max1≤i≤n |ui|, then there is a non-zero vector
k = (k1, . . . , kn) ∈ Zn with

‖k‖∞ ≤
(

2n log H

log 2

)n−1

(and hence for a fixed n it can be found in polynomial time of order (log H)n(n−1)).
Comment: To solve this problem, you can use the following statement (without
proof) which informally means that if a system of homogeneous equations with integer
coefficients has a nontrivial solution then it has an integer solutions with reasonably
small components. It is required in many applications.
Let A = (aij)

m,n
i,j=1 be an m× n matrix of rank r ≤ n− 1 with integer entries of size at

most H, that is,

|aij| ≤ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then there is an integer non-zero vector x = (x1, . . . , xn) ∈ Zn such that Ax = 0 and

‖x‖∞ ≤ (2nH)n−1

where ‖x‖∞ = max1≤i≤n |xi|.

Problem 4. Consider a symmetric matrix An×n, and let λi be a simple eigenvalue of
A with

|λj − λi| = O(1), j 6= i.

In inverse iteration of compute eigenvalue and eigenvector, one needs to solve the
following linear system

(A− µI)yk+1 = xk,

where µ is an approximation of eigenvalue λi, ‖xk‖ = 1and obtain

xk+1 =
yk+1

‖yk+1‖ .

However, for µ close to λi, A−µI has a very small eigenvalue and the linear system
will be ill-conditioned. So there may be large error in the numerical solution to the
linear system, denoted by ỹk+1. Even though we may get large error in ỹk+1, the x̃k+1

we get from x̃k+1 = ỹk+1

‖ỹk+1‖ is accurate.
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(1) ỹk+1 satisfies
(A− µI + δA)ỹk+1 = xk,

where ‖δA‖ = O(ε) and ε is the machine precision. Show that

(A− λi)
ỹk+1

‖ỹk+1‖‖ ≤ |µ− λi|+ ‖δA‖+
1

‖ỹk+1‖ .

(2) Let αi = xt
kqi, where qi is the normalized eigenvector corresponding to λi. Show

that

‖ỹk+1‖ ≥ |αi|
|µ− λi|+ ‖δA‖ .

(3) Conclude that
‖xk+1 − (±)qi‖ = O(|λi − µ|+ ε).

Problem 5. A function f : Rn → R in C2 is called strongly convex if its Hessian
matrix satisfies ∇2f º mI for some m > 0. Show that the following statements are
equivalent:

(a) f is strongly convex, i.e. ∇2f(x) º mI for all x ∈ Rn;
(b) For any t ∈ [0, 1], any x, y ∈ R,

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)‖x− y‖2;

(c) 〈∇f(x)−∇f(y), x− y〉 ≥ m‖x− y‖2 for any x, y ∈ Rn.
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Analysis and Differential Equations
Team

Please solve 5 out of the following 6 problems.

1. Let D ⊂ Rd, d ≥ 2 be a compact convex set with smooth boundary ∂D so that the
origin belongs to the interior of D. For every x ∈ ∂D let α(x) ∈ (0,∞) be the angle
between the position vector x of the outer normal vector n(x). Let ωd be the surface
area of the unit sphere in Rd. Compute:

1

ωd

∫
∂D

cos(α(x))

|x|d−1
dσ(x)

where dσ denotes the surface measure on ∂D.

2. Let p > 0 and suppose fn, f ∈ Lp[0, 1] and ||fn−f ||p = (
∫ 1

0
|fn(x)−f(x)|pdx)

1
p → 0

as n→ ∞.
a) Show that for every ϵ > 0,

lim
n→∞

m({x ∈ [0, 1]||fn(x)− f(x)| > ϵ}) = 0.

Here m is the Lebesgue measure.
b) Show that there exists a subsequence fnj

such that fnj
(x) → f(x) for almost

every x ∈ [0, 1].

3. 1) Let f be a holomorphic function on the unit disk D = {z ∈ C||z| < 1} except 0.
Assume f ∈ L2(D), i.e.

∫
D
|f(z)|2dzdz̄ <∞, then 0 is a removable singularity.

2) Let fn be a sequence of holomorphic functions over a domain Ω ⊂ C converging
to f uniformly on any compact subset of Ω, does the sequence of its derivatives f

′
n also

have this property?

4. Consider the torus T 2 = C/Λ,Λ = {m+ in|m,n ∈ Z}, i.e. z1, z2 ∈ C are equivalent
if and only if there are integers m,n such that z2 = z1 +m+ in and T 2 are the space
of equivalent classes. Show that the group of holomorphic automorphisms of T 2 is
SL(2,Z) of 2 x 2 integer matrices of determinant 1.

5. Let {en} be an orth-normal basis of l2 of square integrable functions over a circle.
Let A : l2 → l2, Ae1 = 0, Aen = en−1

n−1
, n > 1 be a linear operator. Show that A is an

compact operator and A has no eigenvectors. What are the spectrum of A?

6. If M = [0, 1] is the unit interval, the heat kernel on M can be written

p(x, y, t) = Σkϕk(x)ϕk(y)e
λkt,

where {λk} is an enumeration of the eigenvalues of the ∆ = d2

dx2 on M and {ϕk} are
the corresponding eigenfunctions which vanish on ∂M .

1
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i) Calculate {λk} and the corresponding eigenfunctions.
ii) Prove that |p(x, y, t)| ≤ Ct−1/2, for all x, y, and 0 < t < 1.
iii) What is the exponential rate of decay of p(x, y, t) as t→ ∞, i.e. compute:

lim
t→∞

log(p(x, y, t)).
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Probability and Statistics

Team (5 problems)

Problem 1. For a random walk process on the complete infinite binary tree (see Fig
1.) starting from root (i.e. level 0), we assume that the object moves to the neighbor
nodes with equal probability. Let Xn denote the level number at time = n. Please
prove that

EXn ≤ 1/3n + 4/3

Fig 1.

Problem 2. The goal is to show the concentration inequality for the median of mean
estimator. We divide the problem into three simple steps.

1. Let X be a random variable with EX = µ < ∞ and Var(X) = σ2 < ∞. Suppose
we have m i.i.d. random samples {Xi}m

i=1. Let µ̂m = 1
m

∑m
i=1 Xi from X. Show

that

P
(
|µ̂m − µ| ≥ 2σ

√
1

m

)
≤ 1

4
.

2. Given k i.i.d. Bernoulli random variables {Bj}k
j=1 with EBj = p < 1

2
. Use the

moment generating function of Bj, i.e., E(exp(tBj)), to show that

P
(1

k

k∑
j=1

Bj ≥
1

2

)
≤ (4p(1− p))

k
2 .

3. Suppose we have n i.i.d. random samples {Xi}n
i=1 from a population with mean

µ and variance σ2. For any positive integer k, we randomly and uniformly divide
all the samples into k subsamples, each having size m = n/k (for simplicity,
we assume n is always divisible by k). Let µ̂j be the sample average of the jth



subsample and m̃ be the median of {µ̂j}k
j=1. Apply the previous two results to

show that

P
(
|m̃− µ| ≥ 2σ

√
k

n

)
≤

(√3

2

)k
.

Hint: Consider the Bernoulli random variable Bj = 1{|µ̂j − µ| ≥ 2σ
√

k
n
} for

j = 1, ..., k.

Problem 3. (a) Let N ≥ 2 be an integer, and let X be a random variable taking
values in {0, 1, 2, . . .} such that P{X ≡ k (mod N)} = 1

N
for all k ∈ {0, 1, . . . , N − 1}.

Compute E(ei(2πm)X/N) (with i =
√
−1) for all integers m ≥ 1.

(b) A game for N players (numbered as 0, 1, 2, . . ., N−1) is as follows: Each player
independently shows a random number of fingers (uniformly chosen from {0, 1, 2, 3, 4, 5});
if S denotes the total number of fingers shown, then the player number S mod N is de-
clared to be the winner of the game.

Find all N such that the players have equal chance to win the game.

Problem 4. Let X1, X2, . . . be independent and identically distributed real-valued
random variables. Prove or disprove: If lim supn→∞

|Xn|
n

≤ 1 almost surely, then∑∞
n=1 P (|Xn| ≥ n) < ∞.

Problem 5. Choose, at random, 2016 points on the circle x2 + y2 = 1. Interpret them
as cuts that divide the circle into 2016 arcs. Compute the expected length of the arc
that contains the point (1, 0). How about the variance.



S.-T. Yau College Student Mathematics Contests 2016

Geometry and Topology
Team

Please solve 5 out of the following 6 problems.

1. Show that CP2n does not cover any manifold except itself.

2. Let X be a topological space and p ∈ X. The reduced suspension ΣX of X is the
space obtained from X × [0, 1] by contracting (X × {0, 1}) ∪ ({p} × [0, 1]) to a point.
Describe the relation between the homology groups of X and ΣX.

3. State and prove the Frobenius Theorem on a differentiable manifold.

4. Show that all geodesics on the sphere Sn are precisely the great circles.

5. Let M be an n-dimensional Riemannian manifold. Denote by R and KM the cur-
vature tensor and sectional curvature of M . If a ≤ KM ≤ b at a point x ∈ M , then, at
this point,

R(e1, e2, e3, e4) ≤
2

3
(b− a)

for all orthonormal four-frames {e1, e2, e3, e4} ⊂ TxM .

6. Let M be a closed minimal hypersurface with constant scalar curvature in Sn+1.
Denote by S the squared length of the second fundamental form of M . Show that
S = 0, or S ≥ n.

1



S.-T. Yau College Student Mathematics Contests 2016

Algebra and Number Theory
Team

This test has 5 problems and is worth 100 points. Carefully justify your answers.

Problem 1 (20 points). Find all real orthogonal 2×2 matrices k with the following
property: There is an upper triangular 2× 2 real matrix b with all diagonal entries
being positive numbers such that kb is a positive definite symmetric matrix.

Problem 2 (20 points). For x ∈ Z and k ≥ 0, define the binomial coefficients(
x

k

)
= x(x− 1) · · · (x− k + 1)

k! ,

(
x

0

)
= 1.

(a) (6 points) Show that x ∈ Z =⇒
(

x
k

)
∈ Z.

(b) (6 points) Show that every function f : Z≥0 → Z can be expressed as f(x) =∑∞
k=0 ak

(
x
k

)
, where ak ∈ Z are uniquely determined by f .

(c) (8 points) Define

φk(x) =
(
x+ bk/2c

k

)
.

Show that every function f : Z→ Z can be expressed as f(x) = ∑∞
k=0 akφk(x),

where ak ∈ Z are uniquely determined by f .

Problem 3 (20 points). Let K be the splitting field of the polynomial

x4 − x2 − 1.

(a) (10 points) Show that the Galois group of K over Q is isomorphic to the
dihedral group D4. Here we adopt the convention that D4 is the group of
symmetries of a square and has order 8.

(b) (10 points) Determine the lattice of subfields of K: Find all subfields of K
and describe the partial order induced by inclusion.

Problem 4 (20 points). Let G be a (not necessarily finite) group and let F be a
field of characteristic 6= 2. Let V 6= 0 be an indecomposable finite-dimensional
linear representation of G over F . Let R = EndF (V )G be the ring of G-equivariant
endomorphisms of V .
(a) (5 points) Prove the following form of Fitting’s lemma: Every element of R is

either invertible or nilpotent.
(b) (5 points) Deduce that the set I ⊆ R of non-invertible elements is a two-sided

ideal and the quotient R/I is a division algebra over F .
(c) (5 points) We say that V is orthogonal if there exists a G-invariant nonde-

generate symmetric bilinear form on V . We say that V is symplectic if there
exists a G-invariant nondegenerate alternating bilinear form on V . Deduce
that if there exists a G-invariant nondegenerate bilinear form on V , then V is
orthogonal or symplectic.
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(d) (5 points) Assume that F is algebraically closed. Deduce from (b) that V
cannot be both orthogonal and symplectic.

Problem 5 (20 points).
(a) (5 points) Let G be a finite group. Let x1, . . . , xh be representatives of the con-

jugacy classes of G. Let ni = #CentG(xi) be the cardinality of the centralizer
of xi. Prove the identity

1 =
h∑

i=1

1
ni

.

(b) (10 points) Deduce that for any integer h ≥ 1, there exist only finitely many
isomorphism classes of finite groups with exactly h conjugacy classes.

(c) (5 points) Find all the finite groups with exactly 3 conjugacy classes.
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S.-T. Yau College Student Mathematics Contests 2016

Applied Math. and Computational Math.
Team (5 problems)

Problem 1. For solving the following partial differential equation

(1) ut + ux = 0, −∞ ≤ x ≤ ∞
with compactly supported initial condition, we consider the following one-step, three-
point scheme on a uniform mesh xj = j∆x with spatial mesh size ∆x:

(2) un+1
j = aun

j + bun
j−1 + cun

j−2, j = · · · ,−1, 0, 1, · · ·
where a, b, c are constants which may depend on the mesh ratio λ = ∆t

∆x
. Here ∆t is

the time step, and un
j approximates the exact solution at u(xj, t

n) with tn = n∆t.

(1) Find the constants a, b, c such that the scheme (2) is second order accurate.
(2) Find the CFL number λ0 such that the scheme (2), with the constants deter-

mined by the step above, is stable in L2 under the time step restriction λ ≤ λ0.
(3) If the PDE (1) is defined on (0,∞) with an initial condition compactly sup-

ported in (0,∞) and a boundary condition u(0, t) = g(t), how would you modify
the scheme (2) so that it can be applied? Can you prove the stability and ac-
curacy of your modified scheme?

Problem 2. Inverse problem. Answer the famous Mark Kac’s equation: “can you
hear the shape of drum?” for the special case.

Consider the one-dimensional oscillator ẍ = −u′(x) with symmetric potential u(−x) =
u(x), u(0) = u′(0) = 0, u′(x) > 0 for x > 0, limx→∞ u(x) = ∞. Denote the inverse
function of y = u(x), x ≥ 0 as x = u−1(y) = φ(y).

(a) For any solution x(t), show there is a conservation of energy

ẋ2(t)

2
+ u(x(t)) ≡ e

where e is a constant.
(b) For any energy e > 0, find a periodic solution with total energy e. Show that the

period is given by

P (e) = 2
√

2

∫ xmax

0

dx√
e− u(x)

, xmax = φ(e) > 0 .

(c) Show that

φ(z) =
1

2π
√

2

∫ z

0

P (e) de√
z − e

.

(d) In the case of iso-chronous P (e) ≡ 2π, show that φ(z) =
√

2z. Then you have
u(x) = 1

2
x2, x(t) = a cos(t) + b sin(t), the famous harmonic oscillator.

1



2

Problem 3. The following statement informally means that if a system of homoge-
neous equations with integer coefficients has a nontrivial solution then it has an integer
solutions with reasonably small components. It is required in many applications.
Let A = (aij)

m,n
i,j=1 be an m× n matrix of rank r ≤ n− 1 with integer entries of size at

most H, that is,
|aij| ≤ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Prove that there is an integer non-zero vector x = (x1, . . . , xn) ∈ Zn such that Ax = 0
and

‖x‖∞ ≤ (2nH)n−1

where ‖x‖∞ = max1≤i≤n |xi|.

Problem 4. This problem considers an iterative scheme

xk+1 = xk + βkpk

for the linear system Ax = b, where A ∈ Rn×n is a given n×n non-singular matrix and
b ∈ Rn is a given vector. In the above scheme, xk denotes the approximate solution at
the k-th iteration, βk is a scalar and pk ∈ Rn is a search direction. If xk is given, the
above scheme will determine xk+1 so that the residual rk+1 := b−Axk+1 is the smallest
possible with respect to the 2-norm.

(1) Determine βk.
(2) Prove that the residual rk+1 is orthogonal to Apk with respect to the usual

inner-product.
(3) Prove that the residuals satisfy

‖rk+1‖ ≤ ‖rk‖ sin(α)

where α is the angle between rk and Apk, and ‖ · ‖ denotes the 2-norm.
(4) Assume that the inner product of rk and Apk is non-zero. Will the above scheme

always converge?
(5) Assume that A is positive definite. We take the search direction pk = rk. Show

that the above scheme converges for any initial guess x0.

Problem 5. Let f : Rn → R be convex and in C1. Suppose f has a local minimum
x∗.

(1) Must this local minimum x∗ be a global minimum?
(2) Consider the following backward gradient method: starting from any x0 ∈ Rn,

define
xk = xk−1 − t∇f(xk), k ≥ 1,

where t > 0 is a fixed step size. Do you need any condition on t to guarantee
{f(xk)} converge? Prove your convergence argument, if {f(xk)} converges.

(3) Suppose f is strongly convex, that is, ∃m > 0 such that 〈∇f(x)−∇f(y), x−y〉 ≥
m‖x− y‖2. Under this additional condition, show that {xk} converges.
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